File size: 15,615 Bytes
6229e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#pragma once

#include <algorithm>

#include "representation.h"
#include "util.h"

#include "../data_structures/encoder_config.h"
#include "../data_structures/train_config.h"
#include "../data_structures/token_sequence.h"
#include "../midi_parsing/midi_io.h"

// START OF NAMESPACE
namespace encoder {

template<class T>
using matrix = std::vector<std::vector<T>>;

std::vector<int> resolve_bar_infill_tokens(std::vector<int> &raw_tokens, const std::shared_ptr<REPRESENTATION> &rep) {
  data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, "resolving bar infill" );
  int fill_pholder = rep->encode(midi::TOKEN_FILL_IN_PLACEHOLDER, 0);
  int fill_start = rep->encode(midi::TOKEN_FILL_IN_START, 0);
  int fill_end = rep->encode(midi::TOKEN_FILL_IN_END, 0);

  std::vector<int> tokens;

  auto start_pholder = raw_tokens.begin();
  auto start_fill = raw_tokens.begin();
  auto end_fill = raw_tokens.begin();

  while (start_pholder != raw_tokens.end()) {
    start_pholder = next(start_pholder); // FIRST TOKEN IS PIECE_START ANYWAYS
    auto last_start_pholder = start_pholder;
    start_pholder = find(start_pholder, raw_tokens.end(), fill_pholder);
    if (start_pholder != raw_tokens.end()) {
      start_fill = find(next(start_fill), raw_tokens.end(), fill_start);
      end_fill = find(next(end_fill), raw_tokens.end(), fill_end);

      // insert from last_start_pholder --> start_pholder
      tokens.insert(tokens.end(), last_start_pholder, start_pholder);
      tokens.insert(tokens.end(), next(start_fill), end_fill);
    }
    else {
      // insert from last_start_pholder --> end of sequence (excluding fill)
      start_fill = find(raw_tokens.begin(), raw_tokens.end(), fill_start);
      tokens.insert(tokens.end(), last_start_pholder, start_fill);
    }
  }
  return tokens;
}

class ENCODER {
public:

  virtual ~ENCODER() {}

  // helper for simplicity
  // also used to keep track of attribute controls used ....

  std::vector<std::string> get_attribute_control_types() {
    std::vector<std::string> types;
    auto enum_descriptor = google::protobuf::GetEnumDescriptor<midi::ATTRIBUTE_CONTROL_TYPE>();
    for (auto c : attribute_control_types) {
      types.push_back(enum_descriptor->FindValueByNumber(c)->name());
    }
    return types;
  }

  virtual void preprocess_piece(midi::Piece *p) {
    // default is to do nothing
  }

  std::vector<int> encode(midi::Piece *p) {
    preprocess_piece(p);
    data_structures::TokenSequence ts = encode_piece(p);
    return ts.tokens;
  }

  std::vector<int> encode_wo_preprocess(midi::Piece *p) {
    data_structures::TokenSequence ts = encode_piece(p);
    return ts.tokens;
  }

  virtual void decode(std::vector<int> &tokens, midi::Piece *p) {
    if (config->do_multi_fill == true) {
      tokens = resolve_bar_infill_tokens(tokens, rep);
    }
    data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, "AFTER BAR INFILL RESOLVED :: ");
    for (int tok : tokens) {
      data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, pretty(tok));
    }
    decode_track(tokens, p, rep, config);
  }

  std::string midi_to_json(const std::string &filepath) {
    midi::Piece p;
    midi_io::ParseSong(filepath, &p, config);
    preprocess_piece(&p); // add features that the encoder may need
    std::string json_string;
    google::protobuf::util::MessageToJsonString(p, &json_string);
    return json_string;
  }

  void midi_to_piece(const std::string& filepath, midi::Piece* p) {
    midi_io::ParseSong(filepath, p, config);
    preprocess_piece(p);
  }
  
  std::vector<int> midi_to_tokens(std::string &filepath) {
    midi::Piece p;
    midi_io::ParseSong(filepath, &p, config);
    data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, data_structures::to_str("Parsed File :: ",util_protobuf::protobuf_to_string(&p)));
    return encode(&p);
  }

  void json_to_midi(std::string &json_string, std::string &filepath) {
    midi::Piece p;
    google::protobuf::util::JsonStringToMessage(json_string.c_str(), &p);
    midi_io::write_midi(&p, filepath, -1);
  }

  std::string json_to_json(std::string &json_string_in) {
    midi::Piece p;
    google::protobuf::util::JsonStringToMessage(json_string_in.c_str(), &p);
    std::string json_string;
    google::protobuf::util::MessageToJsonString(p, &json_string);
    return json_string;
  }

  void json_track_to_midi(std::string &json_string, std::string &filepath, int single_track) {
    midi::Piece p;
    google::protobuf::util::JsonStringToMessage(json_string.c_str(), &p);
    midi_io::write_midi(&p, filepath, single_track);
  }

  std::vector<int> json_to_tokens(std::string &json_string) {
    midi::Piece p;
    google::protobuf::util::JsonStringToMessage(json_string.c_str(), &p);
    return encode(&p); 
  }

  std::string tokens_to_json(std::vector<int> &tokens) {
    midi::Piece p;
    decode(tokens, &p);
    std::string json_string;
    google::protobuf::util::MessageToJsonString(p, &json_string);
    data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_TRACE, data_structures::to_str("Decoded File :: ",json_string));
    return json_string;
  }

  void resample_delta(midi::Piece *p) {
    // This function rewrites the piece events time values to take in account their delta values
    data_structures::LOGGER(data_structures::VERBOSITY_LEVEL_VERBOSE, "Resampling Piece with Delta values");

    //We have to deal with overlapping notes by applying next notes onset delta to previous notes offset
    std::map<int, int> delta_to_apply;
    int track_num = 0;
    for (const auto &track : p->tracks()) {
      int bar_num = 0;
      for (const auto &bar : track.bars()) {
        std::map<int, std::vector<std::tuple<int, int, int, int>>> pitch_to_events;
        for (int i=0; i<bar.events_size(); i++) {
          int event_idx = bar.events()[i];
          midi::Event event = p->events(event_idx);
          pitch_to_events[event.pitch()].push_back(std::make_tuple(event_idx, event.time(), event.velocity(), event.delta()));
        }
        for (auto line : pitch_to_events) {
          std::sort(line.second.begin(), line.second.end(), [](std::tuple<int, int, int, int> a, std::tuple<int, int, int, int> b) {
            if (std::get<1>(a) < std::get<1>(b)) return true;
            if (std::get<1>(b) < std::get<1>(a)) return false;
            return (std::get<2>(a) < std::get<2>(b));
          });
          std::tuple<int, int, int> last_event;
          int last_offset_idx = -1;
          for (auto const& e : line.second) {
            // if onset, check last offset
            if ((std::get<2>(e) > 0) && (last_offset_idx != -1)) {
              if ((std::get<3>(e) != 0) && (std::get<1>(e) == p->events(last_offset_idx).time())) {
                delta_to_apply[last_offset_idx] = std::get<3>(e);
              }
            } else if (std::get<2>(e) == 0) {
              last_offset_idx = std::get<0>(e);
            }
          }
        }
        bar_num++;
      }
      track_num++;
    }

    int current_res = config->resolution;
    int target_res = config->decode_resolution;
    p->set_resolution(target_res);
    p->set_internal_ticks_per_quarter(target_res);
    int old_time, new_time, delta;
    std::vector<std::tuple<int, midi::Event>> events_cache;
    // Get all events and store in cache vector

    int num_events = p->events_size();
    for (int event_index=0; event_index<num_events; event_index++) {
      midi::Event e = p->events(event_index);
      old_time = e.time();
      delta = e.delta();
      if (delta_to_apply.count(event_index) > 0) {
        assert(delta_to_apply.count(event_index) == 1);
        delta = delta_to_apply[event_index]; 
      }
      // We round down to be safe
      new_time = (int)(target_res * old_time / current_res);
      //exclude negative times
      new_time = std::max(new_time + delta, 0);
      // Set new resampled time
      e.set_time(new_time);
      events_cache.push_back(std::make_tuple(event_index, e));
    }
    // Sort events to replace in the correct order
    sort(events_cache.begin(), events_cache.end(), [](std::tuple<int, midi::Event> a, std::tuple<int, midi::Event> b) { 
        return std::get<0>(a) < std::get<0>(b); 
      });
    // Clear all events now that they're cached
    p->clear_events();
    // Reinject resampled events 
    for (const std::tuple<int, midi::Event> &oe : events_cache) {
      midi::Event *ne = p->add_events();
      ne->CopyFrom( std::get<1>(oe) );
    }
    assert(num_events == p->events_size());
  }

  std::string resample_delta_json(std::string &json_string) {
    std::string res_json_string;
    midi::Piece p;
    google::protobuf::util::JsonStringToMessage(json_string.c_str(), &p);
    if (config->use_microtiming) {
      resample_delta(&p);
    }
    google::protobuf::util::MessageToJsonString(p, &res_json_string);
    return res_json_string;
  }

  void tokens_to_json_array(std::vector<std::vector<int>> &seqs, std::vector<midi::Piece> &output) {
    for (int i=0; i<(int)seqs.size(); i++) {
      decode(seqs[i], &(output[i]));
    }
  }

  void tokens_to_midi(std::vector<int> &tokens, std::string &filepath) {
    midi::Piece p;
    decode(tokens, &p);
    midi_io::write_midi(&p, filepath, -1);
  }

  // ====================
  // expose methods of rep that we need

  std::string pretty(int token) {
    return rep->pretty(token);
  }

  int vocab_size() {
    return rep->vocab_size;
  }

  // ====================

  // below is a simplified refactor of the encoding process
  // broken into clear functions to
  // - encode notes within a bar
  // - encode a bar
  // - encode a track
  // - encode a piece

  // ====================

  void encode_notes(int bar_num, int track_num, midi::Piece *p, data_structures::TokenSequence *ts) {
    const auto track = p->tracks(track_num);
    const auto bar = track.bars(bar_num);
    const auto is_drum = data_structures::is_drum_track(track.track_type());
    const int N_DURATION_TOKENS = rep->get_domain_size(midi::TOKEN_NOTE_DURATION);
    int N_TIME_TOKENS = rep->get_domain_size(midi::TOKEN_DELTA);

    // group notes by onset time
    std::vector<int> onsets;
    std::vector<int> onsets_idx;
    std::map<int, std::vector<int>> notes_by_onset;
    std::map<int, int> delta_onsets;
    int idx = 0;
    for (const auto &i : bar.events()) {
      midi::Event event = p->events(i);
      if ((event.internal_duration() > 0) && (event.velocity() > 0)) {
        if (notes_by_onset.find(event.time()) == notes_by_onset.end()) {
          onsets.push_back(event.time());
          onsets_idx.push_back(idx);
          idx += 1;
        }
        notes_by_onset[event.time()].push_back(i);
        delta_onsets[i] = event.delta();
      }
    }

    int last_velocity = -1;
    int onset;
    int d_onset;
    for (const auto &idx : onsets_idx) {
      onset = onsets[idx];
      // checking for onset > 0 is to make things backwards compatible with the old representation
      // however for randomly ordering onset times we need to include onset == 0
      if ((onset > 0)) { 
        ts->push_back( rep->encode(midi::TOKEN_TIME_ABSOLUTE_POS, onset) );
      }
      
      for (const auto &i : notes_by_onset[onset]) {
        midi::Event event = p->events(i);
        d_onset = delta_onsets[i];
        if (rep->has_token_type(midi::TOKEN_VELOCITY_LEVEL)) {
          int current_velocity = rep->encode_partial(midi::TOKEN_VELOCITY_LEVEL, event.velocity());
          if ((current_velocity > 0) && (current_velocity != last_velocity)) {
            ts->push_back( rep->encode(midi::TOKEN_VELOCITY_LEVEL, event.velocity()) );
            last_velocity = current_velocity;
          }
        }
        if (config->use_microtiming) {
          if (d_onset < 0) {
            ts->push_back( rep->encode(midi::TOKEN_DELTA_DIRECTION, 0) );
            d_onset *= -1;
          }
          d_onset = std::min(N_TIME_TOKENS - 1, d_onset);
          if (d_onset > 0) {
            ts->push_back( rep->encode(midi::TOKEN_DELTA, d_onset) );
          }
        }
        ts->push_back( rep->encode(midi::TOKEN_NOTE_ONSET, event.pitch()) );
        if (!is_drum) {
          ts->push_back( rep->encode(midi::TOKEN_NOTE_DURATION, std::min(event.internal_duration(), N_DURATION_TOKENS)-1) );
        }
      }
    }
  }

  void encode_bar(int bar_num, int track_num, midi::Piece *p, data_structures::TokenSequence *ts, bool infill) {
    auto track = p->tracks(track_num);
    const auto bar = track.bars(bar_num);
    const auto is_drum = data_structures::is_drum_track(track.track_type());

    ts->on_bar_start(p, rep);

    if (infill) {
      ts->push_back( rep->encode(midi::TOKEN_FILL_IN_START, 0) );
      encode_notes(bar_num, track_num, p, ts);
      ts->push_back( rep->encode(midi::TOKEN_FILL_IN_END, 0) );
    }
    else {
      ts->push_back( rep->encode(midi::TOKEN_BAR, 0) );

      midi::BarFeatures *bf = util_protobuf::GetBarFeatures(&track, bar_num);
      append_bar_tokens(ts, rep, bf, is_drum);

      if (rep->has_token_type(midi::TOKEN_TIME_SIGNATURE)) {
        ts->push_back( rep->encode(midi::TOKEN_TIME_SIGNATURE, std::make_tuple(bar.ts_numerator(), bar.ts_denominator())) );
      }

      if ((config->do_multi_fill) && (config->multi_fill.find(std::make_pair(track_num,bar_num)) != config->multi_fill.end())) {
        ts->push_back( rep->encode(midi::TOKEN_FILL_IN_PLACEHOLDER, 0) );
      }
      else {
        encode_notes(bar_num, track_num, p, ts);
      }
      ts->push_back( rep->encode(midi::TOKEN_BAR_END, 0) );
    }
  }

  void encode_track(int track_num, midi::Piece *p, data_structures::TokenSequence *ts) {
    const auto track = p->tracks(track_num);
    const auto is_drum = data_structures::is_drum_track(track.track_type());
    const auto f = util_protobuf::GetTrackFeatures(p, track_num);

    ts->on_track_start(p, rep);

    ts->push_back( rep->encode(midi::TOKEN_TRACK, track.track_type()) );

    append_track_pre_instrument_tokens(ts, rep, f, is_drum);

    if (rep->has_token_type(midi::TOKEN_INSTRUMENT)) {
      int inst = track.instrument();
      ts->push_back( rep->encode(midi::TOKEN_INSTRUMENT, inst) );
    }

    append_track_tokens(ts, rep, f, is_drum);

    for (int i=0; i<track.bars_size(); i++) {
      encode_bar(i, track_num, p, ts, false);
    }

    ts->push_back( rep->encode(midi::TOKEN_TRACK_END, 0) );
  }

  data_structures::TokenSequence encode_piece(midi::Piece *p) {

    // make sure that rep does not try use deprecated note encodings
    if ((!rep->has_token_type(midi::TOKEN_NOTE_DURATION)) || (!rep->has_token_type(midi::TOKEN_TIME_ABSOLUTE_POS))) {
      throw std::runtime_error("ERROR: ENCODING PIECE WITH DEPRECATED NOTE ENCODINGS");
    }

    data_structures::TokenSequence ts(rep);

    ts.push_back( rep->encode(
      midi::TOKEN_PIECE_START, std::min((int)config->do_multi_fill,rep->get_domain_size(midi::TOKEN_PIECE_START)-1)));

    if (rep->has_token_type(midi::TOKEN_NUM_BARS)) {
      ts.push_back( rep->encode(midi::TOKEN_NUM_BARS, util_protobuf::GetNumBars(p)) );
    }

    for (int i=0; i<p->tracks_size(); i++) {
      encode_track(i, p, &ts);
    }

    if (config->do_multi_fill) {
      for (const auto &track_bar : config->multi_fill) {      
        encode_bar(std::get<1>(track_bar), std::get<0>(track_bar), p, &ts, true);
      }
    }

    return ts;
  }

  std::shared_ptr<REPRESENTATION> get_rep() {
    return rep;
  }

  std::shared_ptr<data_structures::EncoderConfig> config;
  std::shared_ptr<REPRESENTATION> rep;
  std::vector<midi::ATTRIBUTE_CONTROL_TYPE> attribute_control_types;
};

}
// END OF NAMESPACE