File size: 6,984 Bytes
6f2c7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
title: MIMO - Controllable Character Video Synthesis
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 3.35.2
app_file: app.py
pinned: false
license: apache-2.0
python_version: "3.10"
---
### [Project page](https://menyifang.github.io/projects/MIMO/index.html) | [Paper](https://arxiv.org/abs/2409.16160) | [Video](https://www.youtube.com/watch?v=skw9lPKFfcE) | [Online Demo](https://modelscope.cn/studios/iic/MIMO)
> **MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling**<br>
> [Yifang Men](https://menyifang.github.io/), [Yuan Yao](mailto:yaoy92@gmail.com), [Miaomiao Cui](mailto:miaomiao.cmm@alibaba-inc.com), [Liefeng Bo](https://scholar.google.com/citations?user=FJwtMf0AAAAJ&hl=en)<br>
> Institute for Intelligent Computing (Tongyi Lab), Alibaba Group
> In: CVPR 2025
MIMO is a generalizable model for controllable video synthesis, which can not only synthesize realistic character videos with controllable attributes (i.e., character, motion and scene) provided by very simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework.
## Demo
Animating character image with driving 3D pose from motion dataset
https://github.com/user-attachments/assets/3a13456f-9ee5-437c-aba4-30d8c3b6e251
Driven by in-the-wild video with spatial 3D motion and interactive scene
https://github.com/user-attachments/assets/4d989e7f-a623-4339-b3d1-1d1a33ad25f2
More results can be found in [project page](https://menyifang.github.io/projects/MIMO/index.html).
## π’ News
(2025-06-11) The code is released! We released a simplified version of full implementation, but it could achieve comparable performance.
(2025-02-27) The paper is accepted by CVPR 2025! The full version of the paper is available on [arXiv](https://arxiv.org/abs/2409.16160).
(2024-01-07) The online demo (v1.5) supporting custom driving videos is available now! Try out [](https://modelscope.cn/studios/iic/MIMO).
(2024-11-26) The online demo (v1.0) is available on ModelScope now! Try out [](https://modelscope.cn/studios/iic/MIMO). The 1.5 version to support custom driving videos will be coming soon.
(2024-09-25) The project page, demo video and technical report are released. The full paper version with more details is in process.
## Requirements
* python (>=3.10)
* pyTorch
* tensorflow
* cuda 12.1
* GPU (tested on A100, L20)
## π Getting Started
```bash
git clone https://github.com/menyifang/MIMO.git
cd MIMO
```
### Installation
```bash
conda create -n mimo python=3.10
conda activate mimo
bash install.sh
```
### Downloads
#### Model Weights
You can manually download model weights from [ModelScope](https://modelscope.cn/models/iic/MIMO/files) or [Huggingface](https://huggingface.co/menyifang/MIMO/tree/main), or automatically using follow commands.
Download from HuggingFace
```python
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id='menyifang/MIMO', cache_dir='./pretrained_weights')
```
Download from ModelScope
```python
from modelscope import snapshot_download
model_dir = snapshot_download(model_id='iic/MIMO', cache_dir='./pretrained_weights')
```
#### Prior Model Weights
Download pretrained weights of based model and other components:
- [StableDiffusion V1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
- [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse)
- [image_encoder](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/tree/main/image_encoder)
#### Data Preparation
Download examples and resources (`assets.zip`) from [google drive](https://drive.google.com/file/d/1dg0SDAxEARClYq_6L1T1XIfWvC5iA8WD/view?usp=drive_link) and unzip it under `${PROJECT_ROOT}/`.
You can also process custom videos following [Process driving templates](#process-driving-templates).
After downloading weights and data, the folder of the project structure seems like:
```text
./pretrained_weights/
|-- image_encoder
| |-- config.json
| `-- pytorch_model.bin
|-- denoising_unet.pth
|-- motion_module.pth
|-- pose_guider.pth
|-- reference_unet.pth
|-- sd-vae-ft-mse
| |-- config.json
| |-- diffusion_pytorch_model.bin
| `-- diffusion_pytorch_model.safetensors
`-- stable-diffusion-v1-5
|-- feature_extractor
| `-- preprocessor_config.json
|-- model_index.json
|-- unet
| |-- config.json
| `-- diffusion_pytorch_model.bin
`-- v1-inference.yaml
./assets/
|-- video_template
| |-- template1
```
Note: If you have installed some of the pretrained models, such as `StableDiffusion V1.5`, you can specify their paths in the config file (e.g. `./config/prompts/animation_edit.yaml`).
### Inference
- video character editing
```bash
python run_edit.py
```
- character image animation
```bash
python run_animate.py
```
### Process driving templates
- install external dependencies by
```bash
bash setup.sh
```
you can also use dockerfile(`video_decomp/docker/decomp.dockerfile`) to build a docker image with all dependencies installed.
- download model weights and data from [Huggingface](https://huggingface.co/menyifang/MIMO_VidDecomp/tree/main) and put them under `${PROJECT_ROOT}/video_decomp/`.
```python
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id='menyifang/MIMO_VidDecomp', cache_dir='./video_decomp/')
```
- process the driving video by
```bash
cd video_decomp
python run.py
```
The processed template can be putted under `${PROJECT_ROOT}/assets/video_template` for editing and animation tasks as follows:
```
./assets/video_template/
|-- template1/
| |-- vid.mp4
| |-- mask.mp4
| |-- sdc.mp4
| |-- bk.mp4
| |-- occ.mp4 (if existing)
|-- template2/
|-- ...
|-- templateN/
```
### Training
## π¨ Gradio Demo
**Online Demo**: We launch an online demo of MIMO at [ModelScope Studio](https://modelscope.cn/studios/iic/MIMO).
If you have your own GPU resource (>= 40GB vram), you can run a local gradio app via following commands:
`python app.py`
## Acknowledgments
Thanks for great work from [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone), [SAM](https://github.com/facebookresearch/segment-anything), [4D-Humans](https://github.com/shubham-goel/4D-Humans), [ProPainter](https://github.com/sczhou/ProPainter)
## Citation
If you find this code useful for your research, please use the following BibTeX entry.
```bibtex
@inproceedings{men2025mimo,
title={MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling},
author={Men, Yifang and Yao, Yuan and Cui, Miaomiao and Liefeng Bo},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2025 IEEE Conference on},
year={2025}}
}
``` |