File size: 15,154 Bytes
6f2c7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import numpy as np
import cv2
import glob
import imageio
from PIL import Image
import os
def all_file(file_dir):
L = []
for root, dirs, files in os.walk(file_dir):
for file in files:
extend = os.path.splitext(file)[1]
if extend == '.png' or extend == '.jpg' or extend == '.jpeg' or extend == '.JPG' or extend == '.mp4':
L.append(os.path.join(root, file))
return L
def crop_img(img, mask):
# find the bounding box
x, y, w, h = cv2.boundingRect(mask) #91 85 554 1836
y_max = y + h
x_max = x + w
# extend the bounding box with 0.1
y = max(0, y - int(h * 0.05))
y_max = min(img.shape[0], y_max + int(h * 0.05))
return img[y:y_max, x:x_max]
def pad_img(img, color=[255, 255, 255]):
# pad to square with mod 16 ==0
h, w = img.shape[:2]
max_size = max(h, w)
if max_size % 16 != 0:
max_size = int(max_size / 16) * 16 + 16
top = (max_size - h) // 2
bottom = max_size - h - top
left = (max_size - w) // 2
right = max_size - w - left
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
padding_v = [top, bottom, left, right]
return img, padding_v
def extract_mask_sdc(img):
# >0 value as human
mask = np.zeros_like(img[:, :, 0])
# color to gray
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# mask[gray[:, :] > 0] = 255
mask[gray[:, :] > 10] = 255 # !!bug: remove noise
return mask
def clean_mask(mask):
se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, se1)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
return mask
def crop_img_sdc(img, mask):
# find the bounding box
x, y, w, h = cv2.boundingRect(mask) #91 85 554 1836
y_max = y + h
x_max = x + w
# y = max(0, y-2)
pad_h = 0.1
pad_w = 0.05
y = max(0, y - int(h * pad_h))
y_max = min(img.shape[0], y_max + int(h * pad_h))
x = max(0, x - int(w * pad_w))
x_max = min(img.shape[1], x_max + int(w * pad_w))
return y, y_max,x,x_max
def crop_human(pose_images, vid_images, mask_images):
# find the bbox of the human in the whole frames
bbox = []
y = 10000
y_max = 0
x = 10000
x_max = 0
n_frame = len(pose_images)
for pose_img in pose_images:
frame = np.array(pose_img)
mask = extract_mask_sdc(frame)
y_, y_max_, x_, x_max_ = crop_img_sdc(frame, mask)
y = min(y, y_)
y_max = max(y_max, y_max_)
x = min(x, x_)
x_max = max(x_max, x_max_)
# ensure width and height divisible by 2
h = y_max - y
w = x_max - x
if h % 2 == 1:
h += 1
y_max += 1
if w % 2 == 1:
w += 1
x_max += 1
bbox = [x,x_max,y,y_max]
# crop the human in the whole frames
frames_res = []
vid_res = []
mask_res = []
for i, pose_img in enumerate(pose_images):
frame = np.array(pose_img)
frame = frame[y:y_max, x:x_max]
frame = Image.fromarray(frame)
frames_res.append(frame)
vid = vid_images[i]
vid = np.array(vid)
vid_res.append(Image.fromarray(vid[y:y_max, x:x_max]))
mask = mask_images[i]
mask = np.array(mask)
mask_res.append(Image.fromarray(mask[y:y_max, x:x_max]))
return frames_res, vid_res, mask_res
def init_bbox():
return [10000, 0, 10000, 0]
def bbox_div2(x, x_max, y, y_max):
# ensure width and height divisible by 2
h = y_max - y
w = x_max - x
if h % 2 == 1:
h += 1
y_max += 1
if w % 2 == 1:
w += 1
x_max += 1
return x, x_max, y, y_max
def bbox_pad(x, x_max, y, y_max, img):
w = x_max - x
h = y_max - y
# pad to square with mod 16 ==0
max_size = max(h, w)
if max_size % 16 != 0:
max_size = int(max_size / 16) * 16 + 16
top = (max_size - h) // 2
bottom = max_size - h - top
left = (max_size - w) // 2
right = max_size - w - left
y = max(0, y-top)
y_max = min(img.shape[0], y_max+bottom)
x = max(0, x-left)
x_max = min(img.shape[1], x_max+right)
return x, x_max, y, y_max
def compute_area_ratio(bbox_frame, bbox_clip):
x1, x2, y1, y2 = bbox_frame
x1_clip, x2_clip, y1_clip, y2_clip = bbox_clip
area_frame = (x2 - x1) * (y2 - y1)
area_clip = (x2_clip - x1_clip) * (y2_clip - y1_clip)
ratio = area_frame / area_clip
return ratio
def update_clip(bbox_clip, start_idx, i, bbox_max):
x, x_max, y, y_max = bbox_max
for j in range(start_idx, i):
bbox_clip[j] = [x, x_max, y, y_max]
def crop_human_clip_auto_context(pose_images, vid_images, bk_images, overlay=4):
# find the bbox of the human in the clip frames
bbox_clip = []
bbox_perframe = []
ratio_list = []
x, x_max, y, y_max = init_bbox()
n_frame = len(pose_images)
context_list = []
bbox_clip_list = []
areas = np.zeros(n_frame)
start_idx = 0
for i in range(0, n_frame):
# print('i:', i)
pose_img = pose_images[i]
frame = np.array(pose_img)
mask = extract_mask_sdc(frame)
mask = clean_mask(mask)
y_, y_max_, x_, x_max_ = crop_img_sdc(frame, mask)
x_, x_max_, y_, y_max_ = bbox_div2(x_, x_max_, y_, y_max_)
x_, x_max_, y_, y_max_ = bbox_pad(x_, x_max_, y_, y_max_, frame)
bbox_max_prev = (x, x_max, y, y_max)
# update max
y = min(y, y_)
y_max = max(y_max, y_max_)
x = min(x, x_)
x_max = max(x_max, x_max_)
bbox_max_cur = (x, x_max, y, y_max)
# save bbox per frame
bbox_cur = [x_, x_max_, y_, y_max_]
bbox_perframe.append(bbox_cur)
bbox_clip.append(bbox_cur)
# compute the area of each frame
area = (x_max_ - x_) * (y_max_ - y_)/100
areas[i] = area
area_max = (y_max - y) * (x_max - x)/100
if area_max!=0:
ratios = areas[start_idx:i]/area_max
else:
ratios = np.zeros(i-start_idx)
# ROI_THE = 0.2
ROI_THE = 0.5
if (i == n_frame - 1):
i += 1
# print('update from ')
# print('start_idx:', start_idx)
# print('i:', i)
# print('clip from to:', range(start_idx, i))
if len(context_list)==0:
context_list.append(list(range(start_idx, i)))
else:
overlay_ = min(overlay, len(context_list[-1]))
context_list.append(list(range(start_idx-overlay_, i)))
bbox_clip_list.append(bbox_max_cur)
update_clip(bbox_clip, start_idx, i, bbox_max_cur)
start_idx = i
continue
elif np.any(ratios < ROI_THE) and ratios.sum()!=0:
# generate a list from start_idx to i
if len(context_list)==0:
context_list.append(list(range(start_idx, i)))
else:
overlay_ = min(overlay, len(context_list[-1]))
context_list.append(list(range(start_idx-overlay_, i)))
bbox_clip_list.append(bbox_max_prev)
# print('update from ')
# print('start_idx:', start_idx)
# print('i:', i)
update_clip(bbox_clip, start_idx, i, bbox_max_prev)
x, x_max, y, y_max = bbox_cur
start_idx = i
continue
# vis ratio
for i in range(0, n_frame):
# print('i:', i)
bbox_frame_ = bbox_perframe[i]
bbox_clip_ = bbox_clip[i]
# print('bbox_frame_:', bbox_frame_)
# print('bbox_clip_:', bbox_clip_)
if np.array(bbox_clip_).sum()==0:
ratio = 0
else:
ratio = compute_area_ratio(bbox_frame_, bbox_clip_)
# print('ratio:', ratio)
ratio_list.append(ratio)
# crop images
frames_res = []
vid_res = []
bk_res = []
for k, context in enumerate(context_list):
for i in context:
pose_img = pose_images[i]
frame = np.array(pose_img)
x, x_max, y, y_max = bbox_clip_list[k]
if x >= x_max or y >= y_max:
x, x_max, y, y_max = 0, frame.shape[1] - 1, 0, frame.shape[0] - 1
frame = frame[y:y_max, x:x_max]
frame = Image.fromarray(frame)
frames_res.append(frame)
vid = vid_images[i]
vid = np.array(vid)
vid_res.append(Image.fromarray(vid[y:y_max, x:x_max]))
bk = bk_images[i]
bk = np.array(bk)
bk_res.append(Image.fromarray(bk[y:y_max, x:x_max]))
return frames_res, vid_res, bk_res, bbox_clip, context_list, bbox_clip_list
def crop_human_clip(pose_images, vid_images, bk_images, clip_length=1):
# find the bbox of the human in the clip frames
bbox_clip = []
x, x_max, y, y_max = init_bbox()
n_frame = len(pose_images)
for i in range(0, n_frame):
# print('i:', i)
pose_img = pose_images[i]
frame = np.array(pose_img)
mask = extract_mask_sdc(frame)
mask = clean_mask(mask)
y_, y_max_, x_, x_max_ = crop_img_sdc(frame, mask)
x_, x_max_, y_, y_max_ = bbox_div2(x_, x_max_, y_, y_max_)
x_, x_max_, y_, y_max_ = bbox_pad(x_, x_max_, y_, y_max_, frame)
# print(x_,x_max_,y_,y_max_)
y = min(y, y_)
y_max = max(y_max, y_max_)
x = min(x, x_)
x_max = max(x_max, x_max_)
# print(x,x_max,y,y_max)
if ((i+1) % clip_length == 0) or (i==n_frame-1):
x, x_max, y, y_max = bbox_div2(x, x_max, y, y_max)
if x>=x_max or y>=y_max:
x, x_max, y, y_max = 0, frame.shape[1]-1, 0, frame.shape[0]-1
# print(x,x_max,y,y_max)
bbox_clip.append([x, x_max, y, y_max])
x, x_max, y, y_max = init_bbox()
# crop images
frames_res = []
vid_res = []
bk_res = []
for i, pose_img in enumerate(pose_images):
x, x_max, y, y_max = bbox_clip[i//clip_length]
frame = np.array(pose_img)
frame = frame[y:y_max, x:x_max]
frame = Image.fromarray(frame)
frames_res.append(frame)
vid = vid_images[i]
vid = np.array(vid)
vid_res.append(Image.fromarray(vid[y:y_max, x:x_max]))
bk = bk_images[i]
bk = np.array(bk)
bk_res.append(Image.fromarray(bk[y:y_max, x:x_max]))
return frames_res, vid_res, bk_res, bbox_clip
def init_bk(n_frame,h,w):
images = []
for i in range(n_frame):
img = np.ones((h, w, 3), dtype=np.uint8) * 255
images.append(Image.fromarray(img))
return images
def pose_adjust(pose_image, width=512, height=784):
canvas = np.zeros((height, width, 3), dtype=np.uint8)
# PIL to numpy
pose_img = np.array(pose_image)
h, w, c = pose_img.shape
# print('pose_img:', pose_img.shape)
# resize
# pose_img = cv2.resize(pose_img, (width, int(h * width / w)), interpolation=cv2.INTER_AREA)
nh, nw = height, int(w * height / h)
pose_img = cv2.resize(pose_img, (nw, nh), interpolation=cv2.INTER_AREA)
if nw < width:
# pad
pad = (width - nw) // 2
canvas[:, pad:pad + nw, :] = pose_img
else:
# center crop
crop = (nw - width) // 2
canvas = pose_img[:, crop:crop + width, :]
# numpy to PIL
canvas = Image.fromarray(canvas)
return canvas
def load_pretrain_pose_guider(model, ckpt_path):
state_dict = torch.load(ckpt_path, map_location="cpu")
# for k,v in state_dict.items():
# print(k, v.shape)
weights = state_dict['conv_in.weight']
# _,c,_,_ = weights.shape
# if c!=
weights = torch.cat((weights, torch.zeros_like(weights), torch.zeros_like(weights)), dim=1)
state_dict['conv_in.weight'] = weights
model.load_state_dict(state_dict, strict=True)
return model
def refine_img_prepross(image, mask):
im_ary = np.asarray(image).astype(np.float32)
input = np.concatenate([im_ary, mask[:, :, np.newaxis]], axis=-1)
return input
mask_mode = {'up_down_left_right': 0, 'left_right_up': 1, 'left_right_down': 2, 'up_down_left': 3, 'up_down_right': 4,
'left_right': 5, 'up_down': 6, 'left_up': 7, 'right_up': 8, 'left_down': 9, 'right_down': 10,
'left': 11, 'right': 12, 'up': 13, 'down': 14, 'inner': 15}
def get_mask(mask_list, bbox, img):
w, h = img.size
# print('size w h:', w, h)
# print('bbox:', bbox)
w_min, w_max, h_min, h_max = bbox
if w_min<=0 and w_max>=w and h_min<=0 and h_max>=h: # up_down_left_right
mode = 'up_down_left_right'
elif w_min<=0 and w_max>=w and h_min<=0:
mode = 'left_right_up'
elif w_min<=0 and w_max>=w and h_max>=h:
mode = 'left_right_down'
elif w_min <= 0 and h_min <= 0 and h_max >= h:
mode = 'up_down_left'
elif w_max >= w and h_min <= 0 and h_max >= h:
mode = 'up_down_right'
elif w_min<=0 and w_max>=w: #
mode = 'left_right'
elif h_min<=0 and h_max>=h: #
mode = 'up_down'
elif w_min<=0 and h_min<=0: # left_up
mode = 'left_up'
elif w_max>=w and h_min<=0: # right_up5
mode = 'right_up'
elif w_min<=0 and h_max>=h: # left_down6
mode = 'left_down'
elif w_max>=w and h_max>=h: # right_down7
mode = 'right_down'
elif w_min<=0:
mode = 'left'
elif w_max>=w:
mode = 'right'
elif h_min<=0:
mode = 'up'
elif h_max>=h:
mode = 'down'
else:
mode = 'inner'
mask = mask_list[mask_mode[mode]]
return mask
def load_mask_list(mask_path):
mask_list = []
for key in mask_mode.keys():
mask = cv2.imread(mask_path[:-4] + '_%s.png'%key)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
mask_list.append(mask)
return mask_list
def recover_bk(images, start_idx, end_idx, template_name=None):
img = np.array(images[0])
for i in range(start_idx, end_idx):
if template_name == "dance_indoor_1":
images[i][:img.shape[0], :, 0] = 255
images[i][:img.shape[0], :, 1] = 255
images[i][:img.shape[0], :, 2] = 255
else:
img_blank = np.ones_like(img) * 255
images[i] = Image.fromarray(img_blank)
return images
def load_video_fixed_fps(vid_path, target_fps=30, target_speed=1):
# Load video and get metadata
reader = imageio.get_reader(vid_path)
fps = round(reader.get_meta_data()['fps'])
# print('original fps:', fps)
# print('target fps:', target_fps)
# Calculate the ratio of original fps to target fps to determine which frames to keep
keep_ratio = target_speed * fps / target_fps
n_frames = reader.count_frames()
keep_frames_indices = np.arange(0, n_frames, keep_ratio).astype(int)
# Extract frames at the target frame rate
frames = [Image.fromarray(reader.get_data(i)) for i in keep_frames_indices if i < len(reader)]
reader.close()
return frames
|