Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification, Trainer, TrainingArguments
|
| 2 |
+
import datasets
|
| 3 |
+
|
| 4 |
+
# Load the pre-trained XLM-Roberta-Large model and tokenizer
|
| 5 |
+
model_name = 'xlm-roberta-large'
|
| 6 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = XLMRobertaForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
| 8 |
+
|
| 9 |
+
# Load the sentiment analysis dataset
|
| 10 |
+
dataset = datasets.load_dataset('imdb')
|
| 11 |
+
|
| 12 |
+
# Tokenize the dataset
|
| 13 |
+
def tokenize(batch):
|
| 14 |
+
return tokenizer(batch['text'], padding=True, truncation=True)
|
| 15 |
+
|
| 16 |
+
dataset = dataset.map(tokenize, batched=True)
|
| 17 |
+
|
| 18 |
+
# Fine-tune the model on the dataset
|
| 19 |
+
training_args = TrainingArguments(
|
| 20 |
+
output_dir='./results',
|
| 21 |
+
evaluation_strategy='epoch',
|
| 22 |
+
learning_rate=2e-5,
|
| 23 |
+
per_device_train_batch_size=8,
|
| 24 |
+
per_device_eval_batch_size=8,
|
| 25 |
+
num_train_epochs=3,
|
| 26 |
+
weight_decay=0.01,
|
| 27 |
+
push_to_hub=False,
|
| 28 |
+
logging_dir='./logs',
|
| 29 |
+
logging_steps=10,
|
| 30 |
+
load_best_model_at_end=True,
|
| 31 |
+
metric_for_best_model='accuracy'
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
trainer = Trainer(
|
| 35 |
+
model=model,
|
| 36 |
+
args=training_args,
|
| 37 |
+
train_dataset=dataset['train'],
|
| 38 |
+
eval_dataset=dataset['test']
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
trainer.train()
|
| 42 |
+
|
| 43 |
+
import torch
|
| 44 |
+
|
| 45 |
+
# Load the fine-tuned XLM-Roberta-Large model
|
| 46 |
+
model_path = './results/checkpoint-1000'
|
| 47 |
+
model = XLMRobertaForSequenceClassification.from_pretrained(model_path)
|
| 48 |
+
|
| 49 |
+
# Create a function that takes a text input and returns the predicted sentiment label
|
| 50 |
+
def predict_sentiment(text):
|
| 51 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
| 52 |
+
outputs = model(**inputs)
|
| 53 |
+
logits = outputs.logits
|
| 54 |
+
predicted_class = torch.argmax(logits, dim=1)
|
| 55 |
+
return 'positive' if predicted_class == 1 else 'negative'
|
| 56 |
+
|
| 57 |
+
import gradio as gr
|
| 58 |
+
|
| 59 |
+
# Create a Gradio interface for the predict_sentiment function
|
| 60 |
+
iface = gr.Interface(
|
| 61 |
+
fn=predict_sentiment,
|
| 62 |
+
inputs=gr.inputs.Textbox(placeholder='Enter text here...'),
|
| 63 |
+
outputs=gr.outputs.Textbox(placeholder='Sentiment prediction...')
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the interface
|
| 67 |
+
iface.launch()
|