mahmoudNas03 commited on
Commit
647fdca
·
verified ·
1 Parent(s): f59a94a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoImageProcessor, SiglipForImageClassification
2
+ from PIL import Image
3
+ import torch
4
+ import cv2
5
+ import os
6
+ import gradio as gr
7
+
8
+ # Load model and processor
9
+ model_name = "prithivMLmods/deepfake-detector-model-v1"
10
+ model = SiglipForImageClassification.from_pretrained(model_name)
11
+ processor = AutoImageProcessor.from_pretrained(model_name)
12
+
13
+ # Updated label mapping
14
+ id2label = {
15
+ "0": "fake",
16
+ "1": "real"
17
+ }
18
+
19
+ def classify_image(image):
20
+ image = Image.fromarray(image).convert("RGB")
21
+ inputs = processor(images=image, return_tensors="pt")
22
+
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+ logits = outputs.logits
26
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
27
+
28
+ prediction = {
29
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
30
+ }
31
+
32
+ return prediction
33
+
34
+ def sliceFrames(cap):
35
+ frame_count = 0
36
+ frames = []
37
+
38
+ while True:
39
+ ret, frame = cap.read()
40
+ if not ret:
41
+ break
42
+ # Save every 10th frame
43
+ if frame_count % 10 == 0:
44
+ frames.append(frame)
45
+ frame_count += 1
46
+
47
+ cap.release()
48
+ return frames
49
+
50
+ def classify_video(video_path):
51
+ cap = cv2.VideoCapture(video_path)
52
+ if not cap.isOpened():
53
+ return {"error": "Could not open video."}
54
+
55
+ frames = sliceFrames(cap)
56
+ totalfake = 0
57
+ totalreal = 0
58
+
59
+ for frame in frames:
60
+ prediction = classify_image(frame)
61
+ totalfake += prediction["fake"]
62
+ totalreal += prediction["real"]
63
+
64
+ avg_fake = totalfake / len(frames) if frames else 0
65
+ avg_real = totalreal / len(frames) if frames else 0
66
+
67
+ return {
68
+ "average_fake": round(avg_fake, 3),
69
+ "average_real": round(avg_real, 3),
70
+ }
71
+
72
+ # Gradio Interface
73
+ def gradio_interface(video_file):
74
+ return classify_video(video_file)
75
+
76
+ iface = gr.Interface(
77
+ fn=gradio_interface,
78
+ inputs=gr.Video(label="Upload a video"),
79
+ outputs=gr.JSON(label="Prediction"),
80
+ title="Deepfake Detector",
81
+ description="Upload a video to check if it's real or fake."
82
+ )
83
+
84
+ if __name__ == "__main__":
85
+ iface.launch()