Spaces:
Running
Running
upload examples
Browse files- .gitignore +3 -1
- examples/01.jpg +0 -0
- examples/02.jpg +0 -0
- examples/03.jpg +0 -0
- playground.py +184 -0
.gitignore
CHANGED
|
@@ -146,9 +146,11 @@ cython_debug/
|
|
| 146 |
|
| 147 |
# PyCharm
|
| 148 |
.idea/
|
| 149 |
-
examples/
|
| 150 |
task_make
|
| 151 |
task_upload
|
| 152 |
setup.py
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
|
|
|
|
| 146 |
|
| 147 |
# PyCharm
|
| 148 |
.idea/
|
|
|
|
| 149 |
task_make
|
| 150 |
task_upload
|
| 151 |
setup.py
|
| 152 |
+
playground.py
|
| 153 |
+
|
| 154 |
+
|
| 155 |
|
| 156 |
|
examples/01.jpg
ADDED
|
examples/02.jpg
ADDED
|
examples/03.jpg
ADDED
|
playground.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import PIL.Image
|
| 2 |
+
import cv2
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import huggingface_hub
|
| 5 |
+
import numpy as np
|
| 6 |
+
import onnxruntime as rt
|
| 7 |
+
from PIL import ImageOps
|
| 8 |
+
from carvekit.trimap.generator import TrimapGenerator
|
| 9 |
+
from pymatting import estimate_alpha_cf, estimate_foreground_ml, stack_images, load_image
|
| 10 |
+
|
| 11 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 12 |
+
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
|
| 13 |
+
rmbg_model = rt.InferenceSession(model_path, providers=providers)
|
| 14 |
+
|
| 15 |
+
trimapGenerator = TrimapGenerator()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# def custom_background(background, foreground):
|
| 19 |
+
# foreground = ImageOps.contain(foreground, background.size)
|
| 20 |
+
# x = (background.size[0] - foreground.size[0]) // 2
|
| 21 |
+
# y = (background.size[1] - foreground.size[1]) // 2
|
| 22 |
+
# background.paste(foreground, (x, y), foreground)
|
| 23 |
+
# return background
|
| 24 |
+
|
| 25 |
+
def custom_background(background: PIL.Image.Image, foreground: np.ndarray):
|
| 26 |
+
final_foreground = PIL.Image.fromarray(foreground)
|
| 27 |
+
x = (background.size[0] - final_foreground.size[0]) / 2
|
| 28 |
+
y = (background.size[1] - final_foreground.size[1]) / 2
|
| 29 |
+
box = (x, y, final_foreground.size[0] + x, final_foreground.size[1] + y)
|
| 30 |
+
crop = background.crop(box)
|
| 31 |
+
final_image = crop.copy()
|
| 32 |
+
# put the foreground in the centre of the background
|
| 33 |
+
paste_box = (0, final_image.size[1] - final_foreground.size[1], final_image.size[0], final_image.size[1])
|
| 34 |
+
final_image.paste(final_foreground, paste_box, mask=final_foreground)
|
| 35 |
+
return np.array(final_image)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_mask(img, s=1024):
|
| 39 |
+
img = (img / 255).astype(np.float32)
|
| 40 |
+
h, w = h0, w0 = img.shape[:-1]
|
| 41 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
| 42 |
+
ph, pw = s - h, s - w
|
| 43 |
+
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
| 44 |
+
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
|
| 45 |
+
img_input = np.transpose(img_input, (2, 0, 1))
|
| 46 |
+
img_input = img_input[np.newaxis, :]
|
| 47 |
+
mask = rmbg_model.run(None, {'img': img_input})[0][0]
|
| 48 |
+
mask = np.transpose(mask, (1, 2, 0))
|
| 49 |
+
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
| 50 |
+
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis]
|
| 51 |
+
return mask
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def change_background_color(image, color="blue"):
|
| 55 |
+
mask = get_mask(image)
|
| 56 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
| 57 |
+
mask = (mask * 255).astype(np.uint8)
|
| 58 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
| 59 |
+
image = PIL.Image.fromarray(image)
|
| 60 |
+
background = PIL.Image.new('RGB', image.size, color)
|
| 61 |
+
background.paste(image, (0, 0), image)
|
| 62 |
+
return background
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def generate_trimap(probs, size=7, conf_threshold=0.95):
|
| 66 |
+
"""
|
| 67 |
+
This function creates a trimap based on simple dilation algorithm
|
| 68 |
+
Inputs [3]: an image with probabilities of each pixel being the foreground, size of dilation kernel,
|
| 69 |
+
foreground confidence threshold
|
| 70 |
+
Output : a trimap
|
| 71 |
+
"""
|
| 72 |
+
mask = (probs > 0.05).astype(np.uint8) * 255
|
| 73 |
+
pixels = 2 * size + 1
|
| 74 |
+
kernel = np.ones((pixels, pixels), np.uint8)
|
| 75 |
+
dilation = cv2.dilate(mask, kernel, iterations=1)
|
| 76 |
+
remake = np.zeros_like(mask)
|
| 77 |
+
remake[dilation == 255] = 127 # Set every pixel within dilated region as probably foreground.
|
| 78 |
+
remake[probs > conf_threshold] = 255 # Set every pixel with large enough probability as definitely foreground.
|
| 79 |
+
return remake
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def image2gray(image):
|
| 83 |
+
image = PIL.Image.fromarray(image).convert("L")
|
| 84 |
+
return np.array(image) / 255.0
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def paste(img_orig, alpha):
|
| 88 |
+
img_ = img_orig.astype(np.float32) / 255
|
| 89 |
+
alpha_ = cv2.resize(alpha, (img_.shape[1], img_.shape[0]), cv2.INTER_LANCZOS4)
|
| 90 |
+
fg_alpha = np.concatenate([img_, alpha_[:, :, np.newaxis]], axis=2)
|
| 91 |
+
cv2.imwrite("new_back.png", (fg_alpha * 255).astype(np.uint8))
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def predict(image, new_background):
|
| 95 |
+
mask = get_mask(image)
|
| 96 |
+
mask = (mask * 255).astype(np.uint8)
|
| 97 |
+
mask = mask.repeat(3, axis=2)
|
| 98 |
+
|
| 99 |
+
trimap = generate_trimap(mask)
|
| 100 |
+
trimap = image2gray(trimap)
|
| 101 |
+
# trimap = load_image("images/trimaps/lemur_trimap.png", "GRAY")
|
| 102 |
+
|
| 103 |
+
original = PIL.Image.fromarray(image)
|
| 104 |
+
# mask = image2gray(mask)
|
| 105 |
+
mask = PIL.Image.fromarray(mask).convert("L")
|
| 106 |
+
trimap = trimapGenerator(original_image=original, mask=mask)
|
| 107 |
+
trimap = np.array(trimap) / 255.0
|
| 108 |
+
|
| 109 |
+
foreground = image / 255
|
| 110 |
+
alpha = estimate_alpha_cf(foreground, trimap)
|
| 111 |
+
foreground = estimate_foreground_ml(foreground, alpha)
|
| 112 |
+
cutout = stack_images(foreground, alpha)
|
| 113 |
+
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
|
| 114 |
+
|
| 115 |
+
if new_background is not None:
|
| 116 |
+
return mask, trimap, custom_background(new_background, cutout)
|
| 117 |
+
return alpha, trimap, cutout
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# contours
|
| 121 |
+
def serendipity(image, new_background):
|
| 122 |
+
mask = get_mask(image)
|
| 123 |
+
mask = 255 - mask
|
| 124 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
| 125 |
+
mask = (mask * 255).astype(np.uint8)
|
| 126 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
| 127 |
+
return mask, image
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def negative(image, new_background):
|
| 131 |
+
mask = get_mask(image)
|
| 132 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
| 133 |
+
image = 255 - image
|
| 134 |
+
mask = (mask * 255).astype(np.uint8)
|
| 135 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
| 136 |
+
return mask, image
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def checkit(image, new_background):
|
| 140 |
+
mask = get_mask(image)
|
| 141 |
+
mask = 255 - mask
|
| 142 |
+
image = (mask / image - 255 / (1 + mask)).astype(np.uint8)
|
| 143 |
+
mask = (mask * 255).astype(np.uint8)
|
| 144 |
+
mask = 255 - mask
|
| 145 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
| 146 |
+
mask = mask.repeat(3, axis=2)
|
| 147 |
+
# if new_background is not None:
|
| 148 |
+
# foreground = PIL.Image.fromarray(image)
|
| 149 |
+
# return mask, custom_background(new_background, foreground)
|
| 150 |
+
return mask, image
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
footer = r"""
|
| 154 |
+
<center>
|
| 155 |
+
<b>
|
| 156 |
+
Demo based on <a href='https://github.com/SkyTNT/anime-segmentation'>SkyTNT Anime Segmentation</a>
|
| 157 |
+
</b>
|
| 158 |
+
</center>
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
with gr.Blocks(title="Face Shine") as app:
|
| 162 |
+
gr.HTML("<center><h1>Anime Remove Background</h1></center>")
|
| 163 |
+
with gr.Row():
|
| 164 |
+
with gr.Column():
|
| 165 |
+
input_img = gr.Image(type="numpy", image_mode="RGB", label="Input image")
|
| 166 |
+
new_img = gr.Image(type="pil", image_mode="RGBA", label="Custom background")
|
| 167 |
+
run_btn = gr.Button(variant="primary")
|
| 168 |
+
with gr.Column():
|
| 169 |
+
with gr.Accordion(label="Image mask", open=False):
|
| 170 |
+
output_mask = gr.Image(type="numpy", label="mask")
|
| 171 |
+
output_trimap = gr.Image(type="numpy", label="trimap")
|
| 172 |
+
output_img = gr.Image(type="numpy", label="result")
|
| 173 |
+
|
| 174 |
+
run_btn.click(predict, [input_img, new_img], [output_mask, output_trimap, output_img])
|
| 175 |
+
|
| 176 |
+
with gr.Row():
|
| 177 |
+
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
|
| 178 |
+
examples = gr.Dataset(components=[input_img], samples=examples_data)
|
| 179 |
+
examples.click(lambda x: x[0], [examples], [input_img])
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
+
gr.HTML(footer)
|
| 183 |
+
|
| 184 |
+
app.launch(share=False, debug=True, enable_queue=True, show_error=True)
|