####################################################################################### # # MIT License # # Copyright (c) [2025] [leonelhs@gmail.com] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ####################################################################################### # # This project is one of several repositories exploring image segmentation techniques. # All related projects and interactive demos can be found at: # https://huggingface.co/spaces/leonelhs/removators # huggingface: https://huggingface.co/spaces/leonelhs/human-parser # from itertools import islice import gradio as gr import numpy as np from PIL import Image from ultralytics import YOLO from huggingface_hub import hf_hub_download # model = YOLO("yolo11x-seg.pt") # only to test official model REPO_ID = "MnLgt/yolo-human-parse" model_path = hf_hub_download(repo_id=REPO_ID, filename="yolo-human-parse-epoch-125.pt") model = YOLO(model_path) # use for show bounding boxes def predict_box(image): sections = [] results = model(image)[0] # predict on an image for result in results.boxes: box = np.asarray(result.xyxy)[0] label = results.names[int(result.cls)] sections.append(((int(box[0]), int(box[1]), int(box[2]), int(box[3])), label)) return image, sections def predict(image): sections = [] results = model(image)[0] # predict on an image for box, mask in zip(results.boxes, results.masks): label = results.names[int(box.cls)] data = np.asarray(mask.data) sections.append((data, label)) width = results.masks.shape[1] height = results.masks.shape[2] image = image.resize((height, width), Image.Resampling.BILINEAR) return image, sections with gr.Blocks(title="Yolo human parser") as app: navbar = gr.Navbar(visible=True, main_page_name="Workspace") gr.Markdown("## Yolo human parser") with gr.Row(): with gr.Column(scale=1): inp = gr.Image(type="pil", label="Upload Image") btn_predict = gr.Button("Segment") with gr.Column(scale=2): out = gr.AnnotatedImage(label="Segments annotated") btn_predict.click(predict, inputs=[inp], outputs=[out]) with app.route("Readme", "/readme"): with open("README.md") as f: for line in islice(f, 12, None): gr.Markdown(line.strip()) app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True) app.queue()