change to onnx
Browse files- .gitignore +4 -2
- README.md +1 -1
- app-onnx.py +118 -0
- export_onnx.py +32 -0
- requirements.txt +10 -2
.gitignore
CHANGED
|
@@ -157,8 +157,10 @@ cython_debug/
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
-
|
| 161 |
|
| 162 |
*.jpeg
|
| 163 |
*.png
|
| 164 |
-
.DS_Store
|
|
|
|
|
|
|
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
.idea/
|
| 161 |
|
| 162 |
*.jpeg
|
| 163 |
*.png
|
| 164 |
+
.DS_Store
|
| 165 |
+
|
| 166 |
+
saved_models/*
|
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: red
|
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.0
|
| 8 |
-
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: openrail
|
| 11 |
short_description: Removes background using DIS
|
|
|
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.0
|
| 8 |
+
app_file: app-onnx.py
|
| 9 |
pinned: false
|
| 10 |
license: openrail
|
| 11 |
short_description: Removes background using DIS
|
app-onnx.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#######################################################################################
|
| 2 |
+
#
|
| 3 |
+
# MIT License
|
| 4 |
+
#
|
| 5 |
+
# Copyright (c) [2025] [leonelhs@gmail.com]
|
| 6 |
+
#
|
| 7 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 8 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 9 |
+
# in the Software without restriction, including without limitation the rights
|
| 10 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 11 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 12 |
+
# furnished to do so, subject to the following conditions:
|
| 13 |
+
#
|
| 14 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 15 |
+
# copies or substantial portions of the Software.
|
| 16 |
+
#
|
| 17 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 18 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 19 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 20 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 21 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 22 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 23 |
+
# SOFTWARE.
|
| 24 |
+
#
|
| 25 |
+
#######################################################################################
|
| 26 |
+
|
| 27 |
+
# This file implements an API endpoint for DIS background image removal system.
|
| 28 |
+
# [Self space] - [https://huggingface.co/spaces/leonelhs/removebg]
|
| 29 |
+
#
|
| 30 |
+
# Source code is based on or inspired by several projects.
|
| 31 |
+
# For more details and proper attribution, please refer to the following resources:
|
| 32 |
+
#
|
| 33 |
+
# - [DIS] - [https://github.com/xuebinqin/DIS]
|
| 34 |
+
# - [removebg] - [https://huggingface.co/spaces/gaviego/removebg]
|
| 35 |
+
# https://github.com/gaurav0651/dis-bg-remover
|
| 36 |
+
|
| 37 |
+
from itertools import islice
|
| 38 |
+
|
| 39 |
+
import cv2
|
| 40 |
+
import gradio as gr
|
| 41 |
+
import numpy as np
|
| 42 |
+
import onnxruntime as ort
|
| 43 |
+
from PIL import Image
|
| 44 |
+
from huggingface_hub import hf_hub_download
|
| 45 |
+
|
| 46 |
+
REPO_ID = "leonelhs/removators"
|
| 47 |
+
|
| 48 |
+
# Load the ONNX model
|
| 49 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename='isnet.onnx')
|
| 50 |
+
|
| 51 |
+
session = ort.InferenceSession(model_path)
|
| 52 |
+
|
| 53 |
+
def normalize(image, mean, std):
|
| 54 |
+
"""Normalize a numpy image with mean and standard deviation."""
|
| 55 |
+
return (image / 255.0 - mean) / std
|
| 56 |
+
|
| 57 |
+
def predict(image_path):
|
| 58 |
+
input_size = (1024, 1024)
|
| 59 |
+
|
| 60 |
+
img = cv2.imread(image_path, cv2.IMREAD_COLOR)
|
| 61 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert from BGR to RGB if using OpenCV
|
| 62 |
+
|
| 63 |
+
# If image is grayscale, convert to RGB
|
| 64 |
+
if len(img.shape) == 2:
|
| 65 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
| 66 |
+
|
| 67 |
+
# Normalize the image using NumPy
|
| 68 |
+
img = img.astype(np.float32) # Convert to float
|
| 69 |
+
im_normalized = normalize(img, mean=[0.5, 0.5, 0.5], std=[1.0, 1.0, 1.0])
|
| 70 |
+
|
| 71 |
+
# Resize the image
|
| 72 |
+
img_resized = cv2.resize(im_normalized, input_size, interpolation=cv2.INTER_LINEAR)
|
| 73 |
+
img_resized = np.transpose(img_resized, (2, 0, 1)) # CHW format
|
| 74 |
+
img_resized = np.expand_dims(img_resized, axis=0) # Add batch dimension
|
| 75 |
+
|
| 76 |
+
# Run inference
|
| 77 |
+
img_resized = img_resized.astype(np.float32)
|
| 78 |
+
ort_inputs = {session.get_inputs()[0].name: img_resized}
|
| 79 |
+
prediction = session.run(None, ort_inputs)
|
| 80 |
+
|
| 81 |
+
# Process the model output
|
| 82 |
+
result = prediction[0][0] # Assuming single output and single batch
|
| 83 |
+
result = np.clip(result, 0, 1) # Assuming you want to clip the result to [0, 1]
|
| 84 |
+
result = (result * 255).astype(np.uint8) # Rescale to [0, 255]
|
| 85 |
+
result = np.transpose(result, (1, 2, 0)) # HWC format
|
| 86 |
+
# Resize to original shape
|
| 87 |
+
original_shape = img.shape[:2]
|
| 88 |
+
return cv2.resize(result, (original_shape[1], original_shape[0]), interpolation=cv2.INTER_LINEAR)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def cuts(image):
|
| 92 |
+
mask = predict(image)
|
| 93 |
+
mask = Image.fromarray(mask).convert('L')
|
| 94 |
+
cutted = Image.open(image).convert("RGB")
|
| 95 |
+
cutted.putalpha(mask)
|
| 96 |
+
return [image, cutted], mask
|
| 97 |
+
|
| 98 |
+
with gr.Blocks(title="DIS") as app:
|
| 99 |
+
navbar = gr.Navbar(visible=True, main_page_name="Workspace")
|
| 100 |
+
gr.Markdown("## Dichotomous Image Segmentation")
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column(scale=1):
|
| 103 |
+
inp_image = gr.Image(type="filepath", label="Upload Image")
|
| 104 |
+
btn_predict = gr.Button(variant="primary", value="Remove background")
|
| 105 |
+
with gr.Column(scale=2):
|
| 106 |
+
with gr.Row():
|
| 107 |
+
preview = gr.ImageSlider(type="filepath", label="Comparer")
|
| 108 |
+
|
| 109 |
+
btn_predict.click(cuts, inputs=[inp_image], outputs=[preview, inp_image])
|
| 110 |
+
|
| 111 |
+
with app.route("Readme", "/readme"):
|
| 112 |
+
with open("README.md") as f:
|
| 113 |
+
for line in islice(f, 12, None):
|
| 114 |
+
gr.Markdown(line.strip())
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
|
| 118 |
+
app.queue()
|
export_onnx.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
from models.isnet import ISNetDIS
|
| 4 |
+
|
| 5 |
+
REPO_ID = "leonelhs/removators"
|
| 6 |
+
|
| 7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
+
|
| 9 |
+
net = ISNetDIS()
|
| 10 |
+
|
| 11 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename='isnet.pth')
|
| 12 |
+
net.load_state_dict(torch.load(model_path, map_location=device))
|
| 13 |
+
net.to(device)
|
| 14 |
+
net.eval()
|
| 15 |
+
|
| 16 |
+
dummy_input = torch.ones(1, 3, 1024, 1024)
|
| 17 |
+
|
| 18 |
+
# Export the model
|
| 19 |
+
torch.onnx.export(
|
| 20 |
+
net, # model
|
| 21 |
+
dummy_input, # example input
|
| 22 |
+
"linear_model.onnx", # output file
|
| 23 |
+
input_names=["input"], # name inputs
|
| 24 |
+
output_names=["output"], # name outputs
|
| 25 |
+
dynamic_axes={ # allow variable batch size
|
| 26 |
+
"input": {0: "batch_size"},
|
| 27 |
+
"output": {0: "batch_size"}
|
| 28 |
+
},
|
| 29 |
+
opset_version=17 # ONNX version
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
print("Model exported to linear_model.onnx")
|
requirements.txt
CHANGED
|
@@ -1,2 +1,10 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Enable only for pythorch app.py
|
| 2 |
+
# torch>=2.8.0
|
| 3 |
+
# torchvision>=0.23.0
|
| 4 |
+
|
| 5 |
+
# Requirements for app-onnx.py
|
| 6 |
+
numpy==2.2.6
|
| 7 |
+
onnxruntime==1.22.1
|
| 8 |
+
opencv-python-headless==4.12.0.88
|
| 9 |
+
pillow==11.3.0
|
| 10 |
+
|