Spaces:
Sleeping
Sleeping
| # https://github.com/deepinsight/insightface/blob/master/python-package/insightface/model_zoo/landmark.py | |
| # -*- coding: utf-8 -*- | |
| # @Organization : insightface.ai | |
| # @Author : Jia Guo | |
| # @Time : 2021-05-04 | |
| # @Function : | |
| from __future__ import division | |
| import pickle | |
| import cv2 | |
| import numpy as np | |
| import onnx | |
| import onnxruntime | |
| from utils import face_align | |
| from utils import transform | |
| __all__ = [ | |
| 'Landmark', | |
| ] | |
| class Landmark: | |
| def __init__(self, model_file=None, session=None, ctx_id=0, **kwargs): | |
| assert model_file is not None | |
| self.model_file = model_file | |
| self.session = session | |
| find_sub = False | |
| find_mul = False | |
| model = onnx.load(self.model_file) | |
| graph = model.graph | |
| for nid, node in enumerate(graph.node[:8]): | |
| #print(nid, node.name) | |
| if node.name.startswith('Sub') or node.name.startswith('_minus'): | |
| find_sub = True | |
| if node.name.startswith('Mul') or node.name.startswith('_mul'): | |
| find_mul = True | |
| if nid<3 and node.name=='bn_data': | |
| find_sub = True | |
| find_mul = True | |
| if find_sub and find_mul: | |
| #mxnet arcface model | |
| input_mean = 0.0 | |
| input_std = 1.0 | |
| else: | |
| input_mean = 127.5 | |
| input_std = 128.0 | |
| self.input_mean = input_mean | |
| self.input_std = input_std | |
| #print('input mean and std:', model_file, self.input_mean, self.input_std) | |
| if self.session is None: | |
| self.session = onnxruntime.InferenceSession(self.model_file, None) | |
| input_cfg = self.session.get_inputs()[0] | |
| input_shape = input_cfg.shape | |
| input_name = input_cfg.name | |
| self.input_size = tuple(input_shape[2:4][::-1]) | |
| self.input_shape = input_shape | |
| outputs = self.session.get_outputs() | |
| output_names = [] | |
| for out in outputs: | |
| output_names.append(out.name) | |
| self.input_name = input_name | |
| self.output_names = output_names | |
| assert len(self.output_names)==1 | |
| output_shape = outputs[0].shape | |
| self.require_pose = False | |
| #print('init output_shape:', output_shape) | |
| if output_shape[1]==3309: | |
| self.lmk_dim = 3 | |
| self.lmk_num = 68 | |
| with open("meanshape_68.pkl", 'rb') as f: | |
| self.mean_lmk = pickle.load(f) | |
| self.require_pose = True | |
| else: | |
| self.lmk_dim = 2 | |
| self.lmk_num = output_shape[1]//self.lmk_dim | |
| self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num) | |
| if ctx_id<0: | |
| self.session.set_providers(['CPUExecutionProvider']) | |
| def get(self, img, face): | |
| bbox = face.bbox | |
| w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | |
| center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | |
| rotate = 0 | |
| _scale = self.input_size[0] / (max(w, h)*1.5) | |
| #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate) | |
| aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate) | |
| input_size = tuple(aimg.shape[0:2][::-1]) | |
| #assert input_size==self.input_size | |
| blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
| pred = self.session.run(self.output_names, {self.input_name : blob})[0][0] | |
| if pred.shape[0] >= 3000: | |
| pred = pred.reshape((-1, 3)) | |
| else: | |
| pred = pred.reshape((-1, 2)) | |
| if self.lmk_num < pred.shape[0]: | |
| pred = pred[self.lmk_num*-1:,:] | |
| pred[:, 0:2] += 1 | |
| pred[:, 0:2] *= (self.input_size[0] // 2) | |
| if pred.shape[1] == 3: | |
| pred[:, 2] *= (self.input_size[0] // 2) | |
| IM = cv2.invertAffineTransform(M) | |
| pred = face_align.trans_points(pred, IM) | |
| face[self.taskname] = pred | |
| if self.require_pose: | |
| P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred) | |
| s, R, t = transform.P2sRt(P) | |
| rx, ry, rz = transform.matrix2angle(R) | |
| pose = np.array( [rx, ry, rz], dtype=np.float32 ) | |
| face['pose'] = pose #pitch, yaw, roll | |
| return pred | |