import torch from torchvision.transforms.functional import normalize from models import CodeFormer from utils import imwrite, img2tensor, tensor2img from facelib.utils.face_restoration_helper import FaceRestoreHelper from huggingface_hub import hf_hub_download REPO_ID = "leonelhs/gfpgan" pretrain_model_path = hf_hub_download(repo_id=REPO_ID, filename="CodeFormer.pth") if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) checkpoint = torch.load(pretrain_model_path)['params_ema'] net.load_state_dict(checkpoint) net.eval() face_helper = FaceRestoreHelper( upscale_factor=2, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device) input_img_list = ["/home/leonel/Pictures/lowres13.jpg"] # -------------------- start to processing --------------------- for i, img_path in enumerate(input_img_list): # clean all the intermediate results to process the next image face_helper.clean_all() img = img_path face_helper.read_image(img) # get face landmarks for each face num_det_faces = face_helper.get_face_landmarks_5( only_center_face=False, resize=640, eye_dist_threshold=5) print(f'\tdetect {num_det_faces} faces') # align and warp each face face_helper.align_warp_face() # face restoration for each cropped face for idx, cropped_face in enumerate(face_helper.cropped_faces): # prepare data cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): output = net(cropped_face_t, w=0.5, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: print(f'\tFailed inference for CodeFormer: {error}') restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face, cropped_face) # paste_back has_aligned = False suffix = None if not has_aligned: bg_img = None face_helper.get_inverse_affine(None) restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=False) imwrite(restored_img, "pretty.png")