leonelhs commited on
Commit
699c2ed
·
1 Parent(s): 250f134

init space

Browse files
Files changed (38) hide show
  1. .gitignore +1 -0
  2. README.md +20 -1
  3. app.py +125 -0
  4. facelib/detection/__init__.py +70 -0
  5. facelib/detection/align_trans.py +219 -0
  6. facelib/detection/matlab_cp2tform.py +317 -0
  7. facelib/detection/retinaface/retinaface.py +370 -0
  8. facelib/detection/retinaface/retinaface_net.py +196 -0
  9. facelib/detection/retinaface/retinaface_utils.py +421 -0
  10. facelib/detection/yolov5face/__init__.py +0 -0
  11. facelib/detection/yolov5face/face_detector.py +142 -0
  12. facelib/detection/yolov5face/models/__init__.py +0 -0
  13. facelib/detection/yolov5face/models/common.py +299 -0
  14. facelib/detection/yolov5face/models/experimental.py +45 -0
  15. facelib/detection/yolov5face/models/yolo.py +235 -0
  16. facelib/detection/yolov5face/models/yolov5l.yaml +47 -0
  17. facelib/detection/yolov5face/models/yolov5n.yaml +45 -0
  18. facelib/detection/yolov5face/utils/__init__.py +0 -0
  19. facelib/detection/yolov5face/utils/autoanchor.py +12 -0
  20. facelib/detection/yolov5face/utils/datasets.py +35 -0
  21. facelib/detection/yolov5face/utils/extract_ckpt.py +5 -0
  22. facelib/detection/yolov5face/utils/general.py +271 -0
  23. facelib/detection/yolov5face/utils/torch_utils.py +40 -0
  24. facelib/parsing/__init__.py +23 -0
  25. facelib/parsing/bisenet.py +140 -0
  26. facelib/parsing/parsenet.py +194 -0
  27. facelib/parsing/resnet.py +69 -0
  28. facelib/utils/__init__.py +7 -0
  29. facelib/utils/face_restoration_helper.py +524 -0
  30. facelib/utils/face_utils.py +248 -0
  31. facelib/utils/misc.py +202 -0
  32. models/__init__.py +2 -0
  33. models/codeformer.py +304 -0
  34. models/vqgan.py +467 -0
  35. playground.py +78 -0
  36. requirements.txt +4 -0
  37. utils/__init__.py +8 -0
  38. utils/img_util.py +170 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .idea
README.md CHANGED
@@ -11,4 +11,23 @@ license: mit
11
  short_description: 'Image face enhancer '
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  short_description: 'Image face enhancer '
12
  ---
13
 
14
+ ## Unofficial CodeFormer Implementation
15
+
16
+ This repository is the result of a deep investigation across multiple sources.
17
+ Because identifying the original CodeFormer source is challenging, this project consolidates and adapts the code to preserve it in a clear, educational form.
18
+ Opaque or redundant code has been removed to make the implementation easier to study and extend.
19
+
20
+ ## Acknowledgments
21
+
22
+ This work integrates code and concepts from several repositories.
23
+ For proper attribution, please refer to the following sources (or notify us if any are missing):
24
+
25
+ - [taming-transformers](https://github.com/CompVis/taming-transformers)
26
+ - [unleashing-transformers](https://github.com/samb-t/unleashing-transformers)
27
+ - [CodeFormer](https://huggingface.co/spaces/sczhou/CodeFormer)
28
+ - [Self Space](https://huggingface.co/spaces/leonelhs/CodeFormer)
29
+
30
+ ## Contact
31
+
32
+ For questions, comments, or feedback, please contact:
33
+ 📧 **leonelhs@gmail.com**
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #######################################################################################
2
+ #
3
+ # MIT License
4
+ #
5
+ # Copyright (c) [2025] [leonelhs@gmail.com]
6
+ #
7
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ # of this software and associated documentation files (the "Software"), to deal
9
+ # in the Software without restriction, including without limitation the rights
10
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ # copies of the Software, and to permit persons to whom the Software is
12
+ # furnished to do so, subject to the following conditions:
13
+ #
14
+ # The above copyright notice and this permission notice shall be included in all
15
+ # copies or substantial portions of the Software.
16
+ #
17
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
+ # SOFTWARE.
24
+ #
25
+ #######################################################################################
26
+ #
27
+ # Source code is based on or inspired by several projects.
28
+ # For more details and proper attribution, please refer to the following resources:
29
+ #
30
+ # - [taming-transformers] - [https://github.com/CompVis/taming-transformers.git]
31
+ # - [unleashing-transformers] - [https://github.com/samb-t/unleashing-transformers.git]
32
+ # - [CodeFormer] - [https://huggingface.co/spaces/sczhou/CodeFormer]
33
+ # - [Self space] - [https://huggingface.co/spaces/leonelhs/CodeFormer]
34
+ #
35
+ from itertools import islice
36
+
37
+ import cv2
38
+ import torch
39
+ import gradio as gr
40
+ from huggingface_hub import hf_hub_download
41
+ from torchvision.transforms.functional import normalize
42
+
43
+ from facelib.utils.face_restoration_helper import FaceRestoreHelper
44
+ from models import CodeFormer
45
+ from utils import img2tensor, tensor2img
46
+
47
+ REPO_ID = "leonelhs/gfpgan"
48
+
49
+ pretrain_model_path = hf_hub_download(repo_id=REPO_ID, filename="CodeFormer.pth")
50
+
51
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
52
+
53
+ net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
54
+ connect_list=['32', '64', '128', '256']).to(device)
55
+
56
+
57
+ checkpoint = torch.load(pretrain_model_path)['params_ema']
58
+ net.load_state_dict(checkpoint)
59
+ net.eval()
60
+
61
+ face_helper = FaceRestoreHelper(
62
+ upscale_factor=2,
63
+ face_size=512,
64
+ crop_ratio=(1, 1),
65
+ det_model='retinaface_resnet50',
66
+ save_ext='png',
67
+ use_parse=True,
68
+ device=device)
69
+
70
+ def predict(image):
71
+ face_helper.clean_all()
72
+ face_helper.read_image(image)
73
+ face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
74
+ face_helper.align_warp_face()
75
+
76
+ # face restoration for each cropped face
77
+ for cropped_face in face_helper.cropped_faces:
78
+ # prepare data
79
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
80
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
81
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
82
+
83
+ try:
84
+ with torch.no_grad():
85
+ output = net(cropped_face_t, w=0.5, adain=True)[0]
86
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
87
+ del output
88
+ torch.cuda.empty_cache()
89
+ except Exception as error:
90
+ print(f'\tFailed inference for CodeFormer: {error}')
91
+ restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
92
+
93
+ restored_face = restored_face.astype('uint8')
94
+ face_helper.add_restored_face(restored_face, cropped_face)
95
+
96
+
97
+ face_helper.get_inverse_affine(None)
98
+ restored_img = face_helper.paste_faces_to_input_image()
99
+ restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
100
+ return image, restored_img
101
+
102
+
103
+ with gr.Blocks(title="RestoreFormer") as app:
104
+ navbar = gr.Navbar(visible=True, main_page_name="Workspace")
105
+ gr.Markdown("## RestoreFormer")
106
+ with gr.Row():
107
+ with gr.Column(scale=1):
108
+ with gr.Row():
109
+ source_image = gr.Image(type="filepath", label="Face image")
110
+ image_btn = gr.Button("Enhance face")
111
+ with gr.Column(scale=1):
112
+ with gr.Row():
113
+ output_image = gr.ImageSlider(label="Enhanced faces", type="filepath")
114
+ # output_image = gr.Image(label="Enhanced faces", type="pil")
115
+
116
+ image_btn.click(fn=predict, inputs=[source_image], outputs=output_image)
117
+
118
+ with app.route("Readme", "/readme"):
119
+ with open("README.md") as f:
120
+ for line in islice(f, 12, None):
121
+ gr.Markdown(line.strip())
122
+
123
+ app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
124
+ app.queue()
125
+
facelib/detection/__init__.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy import deepcopy
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from facelib.detection.yolov5face.models.common import Conv
7
+ from facelib.utils import load_file_from_url
8
+ from .retinaface.retinaface import RetinaFace
9
+ from .yolov5face.face_detector import YoloDetector
10
+ from huggingface_hub import hf_hub_download
11
+
12
+ REPO_ID = "leonelhs/facexlib"
13
+
14
+ def init_detection_model(model_name, half=False, device='cuda'):
15
+ if 'retinaface' in model_name:
16
+ model = init_retinaface_model(model_name, half, device)
17
+ elif 'YOLOv5' in model_name:
18
+ model = init_yolov5face_model(model_name, device)
19
+ else:
20
+ raise NotImplementedError(f'{model_name} is not implemented.')
21
+
22
+ return model
23
+
24
+
25
+ def init_retinaface_model(model_name, half=False, device='cuda'):
26
+ if model_name == 'retinaface_resnet50':
27
+ model = RetinaFace(network_name='resnet50', half=half)
28
+ model_path = hf_hub_download(repo_id=REPO_ID, filename='detection_Resnet50_Final.pth')
29
+ elif model_name == 'retinaface_mobile0.25':
30
+ model = RetinaFace(network_name='mobile0.25', half=half)
31
+ model_path = hf_hub_download(repo_id=REPO_ID, filename='detection_mobilenet0.25_Final.pth')
32
+ else:
33
+ raise NotImplementedError(f'{model_name} is not implemented.')
34
+
35
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
36
+ # remove unnecessary 'module.'
37
+ for k, v in deepcopy(load_net).items():
38
+ if k.startswith('module.'):
39
+ load_net[k[7:]] = v
40
+ load_net.pop(k)
41
+ model.load_state_dict(load_net, strict=True)
42
+ model.eval()
43
+ model = model.to(device)
44
+
45
+ return model
46
+
47
+
48
+ def init_yolov5face_model(model_name, device='cuda'):
49
+ if model_name == 'YOLOv5l':
50
+ model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
51
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
52
+ elif model_name == 'YOLOv5n':
53
+ model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
54
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
55
+ else:
56
+ raise NotImplementedError(f'{model_name} is not implemented.')
57
+
58
+ model_path = load_file_from_url(url=model_url, model_dir='weights/facelib', progress=True, file_name=None)
59
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
60
+ model.detector.load_state_dict(load_net, strict=True)
61
+ model.detector.eval()
62
+ model.detector = model.detector.to(device).float()
63
+
64
+ for m in model.detector.modules():
65
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
66
+ m.inplace = True # pytorch 1.7.0 compatibility
67
+ elif isinstance(m, Conv):
68
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
69
+
70
+ return model
facelib/detection/align_trans.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from .matlab_cp2tform import get_similarity_transform_for_cv2
5
+
6
+ # reference facial points, a list of coordinates (x,y)
7
+ REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
8
+ [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
9
+
10
+ DEFAULT_CROP_SIZE = (96, 112)
11
+
12
+
13
+ class FaceWarpException(Exception):
14
+
15
+ def __str__(self):
16
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
17
+
18
+
19
+ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
20
+ """
21
+ Function:
22
+ ----------
23
+ get reference 5 key points according to crop settings:
24
+ 0. Set default crop_size:
25
+ if default_square:
26
+ crop_size = (112, 112)
27
+ else:
28
+ crop_size = (96, 112)
29
+ 1. Pad the crop_size by inner_padding_factor in each side;
30
+ 2. Resize crop_size into (output_size - outer_padding*2),
31
+ pad into output_size with outer_padding;
32
+ 3. Output reference_5point;
33
+ Parameters:
34
+ ----------
35
+ @output_size: (w, h) or None
36
+ size of aligned face image
37
+ @inner_padding_factor: (w_factor, h_factor)
38
+ padding factor for inner (w, h)
39
+ @outer_padding: (w_pad, h_pad)
40
+ each row is a pair of coordinates (x, y)
41
+ @default_square: True or False
42
+ if True:
43
+ default crop_size = (112, 112)
44
+ else:
45
+ default crop_size = (96, 112);
46
+ !!! make sure, if output_size is not None:
47
+ (output_size - outer_padding)
48
+ = some_scale * (default crop_size * (1.0 +
49
+ inner_padding_factor))
50
+ Returns:
51
+ ----------
52
+ @reference_5point: 5x2 np.array
53
+ each row is a pair of transformed coordinates (x, y)
54
+ """
55
+
56
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
57
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
58
+
59
+ # 0) make the inner region a square
60
+ if default_square:
61
+ size_diff = max(tmp_crop_size) - tmp_crop_size
62
+ tmp_5pts += size_diff / 2
63
+ tmp_crop_size += size_diff
64
+
65
+ if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
66
+
67
+ return tmp_5pts
68
+
69
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
70
+ if output_size is None:
71
+ return tmp_5pts
72
+ else:
73
+ raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
74
+
75
+ # check output size
76
+ if not (0 <= inner_padding_factor <= 1.0):
77
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
78
+
79
+ if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
80
+ output_size = tmp_crop_size * \
81
+ (1 + inner_padding_factor * 2).astype(np.int32)
82
+ output_size += np.array(outer_padding)
83
+ if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
84
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
85
+
86
+ # 1) pad the inner region according inner_padding_factor
87
+ if inner_padding_factor > 0:
88
+ size_diff = tmp_crop_size * inner_padding_factor * 2
89
+ tmp_5pts += size_diff / 2
90
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
91
+
92
+ # 2) resize the padded inner region
93
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
94
+
95
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
96
+ raise FaceWarpException('Must have (output_size - outer_padding)'
97
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
98
+
99
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
100
+ tmp_5pts = tmp_5pts * scale_factor
101
+ # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
102
+ # tmp_5pts = tmp_5pts + size_diff / 2
103
+ tmp_crop_size = size_bf_outer_pad
104
+
105
+ # 3) add outer_padding to make output_size
106
+ reference_5point = tmp_5pts + np.array(outer_padding)
107
+ tmp_crop_size = output_size
108
+
109
+ return reference_5point
110
+
111
+
112
+ def get_affine_transform_matrix(src_pts, dst_pts):
113
+ """
114
+ Function:
115
+ ----------
116
+ get affine transform matrix 'tfm' from src_pts to dst_pts
117
+ Parameters:
118
+ ----------
119
+ @src_pts: Kx2 np.array
120
+ source points matrix, each row is a pair of coordinates (x, y)
121
+ @dst_pts: Kx2 np.array
122
+ destination points matrix, each row is a pair of coordinates (x, y)
123
+ Returns:
124
+ ----------
125
+ @tfm: 2x3 np.array
126
+ transform matrix from src_pts to dst_pts
127
+ """
128
+
129
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
130
+ n_pts = src_pts.shape[0]
131
+ ones = np.ones((n_pts, 1), src_pts.dtype)
132
+ src_pts_ = np.hstack([src_pts, ones])
133
+ dst_pts_ = np.hstack([dst_pts, ones])
134
+
135
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
136
+
137
+ if rank == 3:
138
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
139
+ elif rank == 2:
140
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
141
+
142
+ return tfm
143
+
144
+
145
+ def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
146
+ """
147
+ Function:
148
+ ----------
149
+ apply affine transform 'trans' to uv
150
+ Parameters:
151
+ ----------
152
+ @src_img: 3x3 np.array
153
+ input image
154
+ @facial_pts: could be
155
+ 1)a list of K coordinates (x,y)
156
+ or
157
+ 2) Kx2 or 2xK np.array
158
+ each row or col is a pair of coordinates (x, y)
159
+ @reference_pts: could be
160
+ 1) a list of K coordinates (x,y)
161
+ or
162
+ 2) Kx2 or 2xK np.array
163
+ each row or col is a pair of coordinates (x, y)
164
+ or
165
+ 3) None
166
+ if None, use default reference facial points
167
+ @crop_size: (w, h)
168
+ output face image size
169
+ @align_type: transform type, could be one of
170
+ 1) 'similarity': use similarity transform
171
+ 2) 'cv2_affine': use the first 3 points to do affine transform,
172
+ by calling cv2.getAffineTransform()
173
+ 3) 'affine': use all points to do affine transform
174
+ Returns:
175
+ ----------
176
+ @face_img: output face image with size (w, h) = @crop_size
177
+ """
178
+
179
+ if reference_pts is None:
180
+ if crop_size[0] == 96 and crop_size[1] == 112:
181
+ reference_pts = REFERENCE_FACIAL_POINTS
182
+ else:
183
+ default_square = False
184
+ inner_padding_factor = 0
185
+ outer_padding = (0, 0)
186
+ output_size = crop_size
187
+
188
+ reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
189
+ default_square)
190
+
191
+ ref_pts = np.float32(reference_pts)
192
+ ref_pts_shp = ref_pts.shape
193
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
194
+ raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
195
+
196
+ if ref_pts_shp[0] == 2:
197
+ ref_pts = ref_pts.T
198
+
199
+ src_pts = np.float32(facial_pts)
200
+ src_pts_shp = src_pts.shape
201
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
202
+ raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
203
+
204
+ if src_pts_shp[0] == 2:
205
+ src_pts = src_pts.T
206
+
207
+ if src_pts.shape != ref_pts.shape:
208
+ raise FaceWarpException('facial_pts and reference_pts must have the same shape')
209
+
210
+ if align_type == 'cv2_affine':
211
+ tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
212
+ elif align_type == 'affine':
213
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
214
+ else:
215
+ tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
216
+
217
+ face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
218
+
219
+ return face_img
facelib/detection/matlab_cp2tform.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.linalg import inv, lstsq
3
+ from numpy.linalg import matrix_rank as rank
4
+ from numpy.linalg import norm
5
+
6
+
7
+ class MatlabCp2tormException(Exception):
8
+
9
+ def __str__(self):
10
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
11
+
12
+
13
+ def tformfwd(trans, uv):
14
+ """
15
+ Function:
16
+ ----------
17
+ apply affine transform 'trans' to uv
18
+
19
+ Parameters:
20
+ ----------
21
+ @trans: 3x3 np.array
22
+ transform matrix
23
+ @uv: Kx2 np.array
24
+ each row is a pair of coordinates (x, y)
25
+
26
+ Returns:
27
+ ----------
28
+ @xy: Kx2 np.array
29
+ each row is a pair of transformed coordinates (x, y)
30
+ """
31
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
32
+ xy = np.dot(uv, trans)
33
+ xy = xy[:, 0:-1]
34
+ return xy
35
+
36
+
37
+ def tforminv(trans, uv):
38
+ """
39
+ Function:
40
+ ----------
41
+ apply the inverse of affine transform 'trans' to uv
42
+
43
+ Parameters:
44
+ ----------
45
+ @trans: 3x3 np.array
46
+ transform matrix
47
+ @uv: Kx2 np.array
48
+ each row is a pair of coordinates (x, y)
49
+
50
+ Returns:
51
+ ----------
52
+ @xy: Kx2 np.array
53
+ each row is a pair of inverse-transformed coordinates (x, y)
54
+ """
55
+ Tinv = inv(trans)
56
+ xy = tformfwd(Tinv, uv)
57
+ return xy
58
+
59
+
60
+ def findNonreflectiveSimilarity(uv, xy, options=None):
61
+ options = {'K': 2}
62
+
63
+ K = options['K']
64
+ M = xy.shape[0]
65
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
66
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
67
+
68
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
69
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
70
+ X = np.vstack((tmp1, tmp2))
71
+
72
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
73
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
74
+ U = np.vstack((u, v))
75
+
76
+ # We know that X * r = U
77
+ if rank(X) >= 2 * K:
78
+ r, _, _, _ = lstsq(X, U, rcond=-1)
79
+ r = np.squeeze(r)
80
+ else:
81
+ raise Exception('cp2tform:twoUniquePointsReq')
82
+ sc = r[0]
83
+ ss = r[1]
84
+ tx = r[2]
85
+ ty = r[3]
86
+
87
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
88
+ T = inv(Tinv)
89
+ T[:, 2] = np.array([0, 0, 1])
90
+
91
+ return T, Tinv
92
+
93
+
94
+ def findSimilarity(uv, xy, options=None):
95
+ options = {'K': 2}
96
+
97
+ # uv = np.array(uv)
98
+ # xy = np.array(xy)
99
+
100
+ # Solve for trans1
101
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
102
+
103
+ # Solve for trans2
104
+
105
+ # manually reflect the xy data across the Y-axis
106
+ xyR = xy
107
+ xyR[:, 0] = -1 * xyR[:, 0]
108
+
109
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
110
+
111
+ # manually reflect the tform to undo the reflection done on xyR
112
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
113
+
114
+ trans2 = np.dot(trans2r, TreflectY)
115
+
116
+ # Figure out if trans1 or trans2 is better
117
+ xy1 = tformfwd(trans1, uv)
118
+ norm1 = norm(xy1 - xy)
119
+
120
+ xy2 = tformfwd(trans2, uv)
121
+ norm2 = norm(xy2 - xy)
122
+
123
+ if norm1 <= norm2:
124
+ return trans1, trans1_inv
125
+ else:
126
+ trans2_inv = inv(trans2)
127
+ return trans2, trans2_inv
128
+
129
+
130
+ def get_similarity_transform(src_pts, dst_pts, reflective=True):
131
+ """
132
+ Function:
133
+ ----------
134
+ Find Similarity Transform Matrix 'trans':
135
+ u = src_pts[:, 0]
136
+ v = src_pts[:, 1]
137
+ x = dst_pts[:, 0]
138
+ y = dst_pts[:, 1]
139
+ [x, y, 1] = [u, v, 1] * trans
140
+
141
+ Parameters:
142
+ ----------
143
+ @src_pts: Kx2 np.array
144
+ source points, each row is a pair of coordinates (x, y)
145
+ @dst_pts: Kx2 np.array
146
+ destination points, each row is a pair of transformed
147
+ coordinates (x, y)
148
+ @reflective: True or False
149
+ if True:
150
+ use reflective similarity transform
151
+ else:
152
+ use non-reflective similarity transform
153
+
154
+ Returns:
155
+ ----------
156
+ @trans: 3x3 np.array
157
+ transform matrix from uv to xy
158
+ trans_inv: 3x3 np.array
159
+ inverse of trans, transform matrix from xy to uv
160
+ """
161
+
162
+ if reflective:
163
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
164
+ else:
165
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
166
+
167
+ return trans, trans_inv
168
+
169
+
170
+ def cvt_tform_mat_for_cv2(trans):
171
+ """
172
+ Function:
173
+ ----------
174
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
175
+ directly used by cv2.warpAffine():
176
+ u = src_pts[:, 0]
177
+ v = src_pts[:, 1]
178
+ x = dst_pts[:, 0]
179
+ y = dst_pts[:, 1]
180
+ [x, y].T = cv_trans * [u, v, 1].T
181
+
182
+ Parameters:
183
+ ----------
184
+ @trans: 3x3 np.array
185
+ transform matrix from uv to xy
186
+
187
+ Returns:
188
+ ----------
189
+ @cv2_trans: 2x3 np.array
190
+ transform matrix from src_pts to dst_pts, could be directly used
191
+ for cv2.warpAffine()
192
+ """
193
+ cv2_trans = trans[:, 0:2].T
194
+
195
+ return cv2_trans
196
+
197
+
198
+ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
199
+ """
200
+ Function:
201
+ ----------
202
+ Find Similarity Transform Matrix 'cv2_trans' which could be
203
+ directly used by cv2.warpAffine():
204
+ u = src_pts[:, 0]
205
+ v = src_pts[:, 1]
206
+ x = dst_pts[:, 0]
207
+ y = dst_pts[:, 1]
208
+ [x, y].T = cv_trans * [u, v, 1].T
209
+
210
+ Parameters:
211
+ ----------
212
+ @src_pts: Kx2 np.array
213
+ source points, each row is a pair of coordinates (x, y)
214
+ @dst_pts: Kx2 np.array
215
+ destination points, each row is a pair of transformed
216
+ coordinates (x, y)
217
+ reflective: True or False
218
+ if True:
219
+ use reflective similarity transform
220
+ else:
221
+ use non-reflective similarity transform
222
+
223
+ Returns:
224
+ ----------
225
+ @cv2_trans: 2x3 np.array
226
+ transform matrix from src_pts to dst_pts, could be directly used
227
+ for cv2.warpAffine()
228
+ """
229
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
230
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
231
+
232
+ return cv2_trans
233
+
234
+
235
+ if __name__ == '__main__':
236
+ """
237
+ u = [0, 6, -2]
238
+ v = [0, 3, 5]
239
+ x = [-1, 0, 4]
240
+ y = [-1, -10, 4]
241
+
242
+ # In Matlab, run:
243
+ #
244
+ # uv = [u'; v'];
245
+ # xy = [x'; y'];
246
+ # tform_sim=cp2tform(uv,xy,'similarity');
247
+ #
248
+ # trans = tform_sim.tdata.T
249
+ # ans =
250
+ # -0.0764 -1.6190 0
251
+ # 1.6190 -0.0764 0
252
+ # -3.2156 0.0290 1.0000
253
+ # trans_inv = tform_sim.tdata.Tinv
254
+ # ans =
255
+ #
256
+ # -0.0291 0.6163 0
257
+ # -0.6163 -0.0291 0
258
+ # -0.0756 1.9826 1.0000
259
+ # xy_m=tformfwd(tform_sim, u,v)
260
+ #
261
+ # xy_m =
262
+ #
263
+ # -3.2156 0.0290
264
+ # 1.1833 -9.9143
265
+ # 5.0323 2.8853
266
+ # uv_m=tforminv(tform_sim, x,y)
267
+ #
268
+ # uv_m =
269
+ #
270
+ # 0.5698 1.3953
271
+ # 6.0872 2.2733
272
+ # -2.6570 4.3314
273
+ """
274
+ u = [0, 6, -2]
275
+ v = [0, 3, 5]
276
+ x = [-1, 0, 4]
277
+ y = [-1, -10, 4]
278
+
279
+ uv = np.array((u, v)).T
280
+ xy = np.array((x, y)).T
281
+
282
+ print('\n--->uv:')
283
+ print(uv)
284
+ print('\n--->xy:')
285
+ print(xy)
286
+
287
+ trans, trans_inv = get_similarity_transform(uv, xy)
288
+
289
+ print('\n--->trans matrix:')
290
+ print(trans)
291
+
292
+ print('\n--->trans_inv matrix:')
293
+ print(trans_inv)
294
+
295
+ print('\n---> apply transform to uv')
296
+ print('\nxy_m = uv_augmented * trans')
297
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
298
+ xy_m = np.dot(uv_aug, trans)
299
+ print(xy_m)
300
+
301
+ print('\nxy_m = tformfwd(trans, uv)')
302
+ xy_m = tformfwd(trans, uv)
303
+ print(xy_m)
304
+
305
+ print('\n---> apply inverse transform to xy')
306
+ print('\nuv_m = xy_augmented * trans_inv')
307
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
308
+ uv_m = np.dot(xy_aug, trans_inv)
309
+ print(uv_m)
310
+
311
+ print('\nuv_m = tformfwd(trans_inv, xy)')
312
+ uv_m = tformfwd(trans_inv, xy)
313
+ print(uv_m)
314
+
315
+ uv_m = tforminv(trans, xy)
316
+ print('\nuv_m = tforminv(trans, xy)')
317
+ print(uv_m)
facelib/detection/retinaface/retinaface.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from PIL import Image
7
+ from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
8
+
9
+ from facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
10
+ from facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
11
+ from facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
12
+ py_cpu_nms)
13
+
14
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
15
+
16
+
17
+ def generate_config(network_name):
18
+
19
+ cfg_mnet = {
20
+ 'name': 'mobilenet0.25',
21
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
22
+ 'steps': [8, 16, 32],
23
+ 'variance': [0.1, 0.2],
24
+ 'clip': False,
25
+ 'loc_weight': 2.0,
26
+ 'gpu_train': True,
27
+ 'batch_size': 32,
28
+ 'ngpu': 1,
29
+ 'epoch': 250,
30
+ 'decay1': 190,
31
+ 'decay2': 220,
32
+ 'image_size': 640,
33
+ 'return_layers': {
34
+ 'stage1': 1,
35
+ 'stage2': 2,
36
+ 'stage3': 3
37
+ },
38
+ 'in_channel': 32,
39
+ 'out_channel': 64
40
+ }
41
+
42
+ cfg_re50 = {
43
+ 'name': 'Resnet50',
44
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
45
+ 'steps': [8, 16, 32],
46
+ 'variance': [0.1, 0.2],
47
+ 'clip': False,
48
+ 'loc_weight': 2.0,
49
+ 'gpu_train': True,
50
+ 'batch_size': 24,
51
+ 'ngpu': 4,
52
+ 'epoch': 100,
53
+ 'decay1': 70,
54
+ 'decay2': 90,
55
+ 'image_size': 840,
56
+ 'return_layers': {
57
+ 'layer2': 1,
58
+ 'layer3': 2,
59
+ 'layer4': 3
60
+ },
61
+ 'in_channel': 256,
62
+ 'out_channel': 256
63
+ }
64
+
65
+ if network_name == 'mobile0.25':
66
+ return cfg_mnet
67
+ elif network_name == 'resnet50':
68
+ return cfg_re50
69
+ else:
70
+ raise NotImplementedError(f'network_name={network_name}')
71
+
72
+
73
+ class RetinaFace(nn.Module):
74
+
75
+ def __init__(self, network_name='resnet50', half=False, phase='test'):
76
+ super(RetinaFace, self).__init__()
77
+ self.half_inference = half
78
+ cfg = generate_config(network_name)
79
+ self.backbone = cfg['name']
80
+
81
+ self.model_name = f'retinaface_{network_name}'
82
+ self.cfg = cfg
83
+ self.phase = phase
84
+ self.target_size, self.max_size = 1600, 2150
85
+ self.resize, self.scale, self.scale1 = 1., None, None
86
+ self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
87
+ self.reference = get_reference_facial_points(default_square=True)
88
+ # Build network.
89
+ backbone = None
90
+ if cfg['name'] == 'mobilenet0.25':
91
+ backbone = MobileNetV1()
92
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
93
+ elif cfg['name'] == 'Resnet50':
94
+ import torchvision.models as models
95
+ backbone = models.resnet50(pretrained=False)
96
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
97
+
98
+ in_channels_stage2 = cfg['in_channel']
99
+ in_channels_list = [
100
+ in_channels_stage2 * 2,
101
+ in_channels_stage2 * 4,
102
+ in_channels_stage2 * 8,
103
+ ]
104
+
105
+ out_channels = cfg['out_channel']
106
+ self.fpn = FPN(in_channels_list, out_channels)
107
+ self.ssh1 = SSH(out_channels, out_channels)
108
+ self.ssh2 = SSH(out_channels, out_channels)
109
+ self.ssh3 = SSH(out_channels, out_channels)
110
+
111
+ self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
112
+ self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
113
+ self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
114
+
115
+ self.to(device)
116
+ self.eval()
117
+ if self.half_inference:
118
+ self.half()
119
+
120
+ def forward(self, inputs):
121
+ out = self.body(inputs)
122
+
123
+ if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
124
+ out = list(out.values())
125
+ # FPN
126
+ fpn = self.fpn(out)
127
+
128
+ # SSH
129
+ feature1 = self.ssh1(fpn[0])
130
+ feature2 = self.ssh2(fpn[1])
131
+ feature3 = self.ssh3(fpn[2])
132
+ features = [feature1, feature2, feature3]
133
+
134
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
135
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
136
+ tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
137
+ ldm_regressions = (torch.cat(tmp, dim=1))
138
+
139
+ if self.phase == 'train':
140
+ output = (bbox_regressions, classifications, ldm_regressions)
141
+ else:
142
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
143
+ return output
144
+
145
+ def __detect_faces(self, inputs):
146
+ # get scale
147
+ height, width = inputs.shape[2:]
148
+ self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
149
+ tmp = [width, height, width, height, width, height, width, height, width, height]
150
+ self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
151
+
152
+ # forawrd
153
+ inputs = inputs.to(device)
154
+ if self.half_inference:
155
+ inputs = inputs.half()
156
+ loc, conf, landmarks = self(inputs)
157
+
158
+ # get priorbox
159
+ priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
160
+ priors = priorbox.forward().to(device)
161
+
162
+ return loc, conf, landmarks, priors
163
+
164
+ # single image detection
165
+ def transform(self, image, use_origin_size):
166
+ # convert to opencv format
167
+ if isinstance(image, Image.Image):
168
+ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
169
+ image = image.astype(np.float32)
170
+
171
+ # testing scale
172
+ im_size_min = np.min(image.shape[0:2])
173
+ im_size_max = np.max(image.shape[0:2])
174
+ resize = float(self.target_size) / float(im_size_min)
175
+
176
+ # prevent bigger axis from being more than max_size
177
+ if np.round(resize * im_size_max) > self.max_size:
178
+ resize = float(self.max_size) / float(im_size_max)
179
+ resize = 1 if use_origin_size else resize
180
+
181
+ # resize
182
+ if resize != 1:
183
+ image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
184
+
185
+ # convert to torch.tensor format
186
+ # image -= (104, 117, 123)
187
+ image = image.transpose(2, 0, 1)
188
+ image = torch.from_numpy(image).unsqueeze(0)
189
+
190
+ return image, resize
191
+
192
+ def detect_faces(
193
+ self,
194
+ image,
195
+ conf_threshold=0.8,
196
+ nms_threshold=0.4,
197
+ use_origin_size=True,
198
+ ):
199
+ """
200
+ Params:
201
+ imgs: BGR image
202
+ """
203
+ image, self.resize = self.transform(image, use_origin_size)
204
+ image = image.to(device)
205
+ if self.half_inference:
206
+ image = image.half()
207
+ image = image - self.mean_tensor
208
+
209
+ loc, conf, landmarks, priors = self.__detect_faces(image)
210
+
211
+ boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
212
+ boxes = boxes * self.scale / self.resize
213
+ boxes = boxes.cpu().numpy()
214
+
215
+ scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
216
+
217
+ landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
218
+ landmarks = landmarks * self.scale1 / self.resize
219
+ landmarks = landmarks.cpu().numpy()
220
+
221
+ # ignore low scores
222
+ inds = np.where(scores > conf_threshold)[0]
223
+ boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
224
+
225
+ # sort
226
+ order = scores.argsort()[::-1]
227
+ boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
228
+
229
+ # do NMS
230
+ bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
231
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
232
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
233
+ # self.t['forward_pass'].toc()
234
+ # print(self.t['forward_pass'].average_time)
235
+ # import sys
236
+ # sys.stdout.flush()
237
+ return np.concatenate((bounding_boxes, landmarks), axis=1)
238
+
239
+ def __align_multi(self, image, boxes, landmarks, limit=None):
240
+
241
+ if len(boxes) < 1:
242
+ return [], []
243
+
244
+ if limit:
245
+ boxes = boxes[:limit]
246
+ landmarks = landmarks[:limit]
247
+
248
+ faces = []
249
+ for landmark in landmarks:
250
+ facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
251
+
252
+ warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
253
+ faces.append(warped_face)
254
+
255
+ return np.concatenate((boxes, landmarks), axis=1), faces
256
+
257
+ def align_multi(self, img, conf_threshold=0.8, limit=None):
258
+
259
+ rlt = self.detect_faces(img, conf_threshold=conf_threshold)
260
+ boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
261
+
262
+ return self.__align_multi(img, boxes, landmarks, limit)
263
+
264
+ # batched detection
265
+ def batched_transform(self, frames, use_origin_size):
266
+ """
267
+ Arguments:
268
+ frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
269
+ type=np.float32, BGR format).
270
+ use_origin_size: whether to use origin size.
271
+ """
272
+ from_PIL = True if isinstance(frames[0], Image.Image) else False
273
+
274
+ # convert to opencv format
275
+ if from_PIL:
276
+ frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
277
+ frames = np.asarray(frames, dtype=np.float32)
278
+
279
+ # testing scale
280
+ im_size_min = np.min(frames[0].shape[0:2])
281
+ im_size_max = np.max(frames[0].shape[0:2])
282
+ resize = float(self.target_size) / float(im_size_min)
283
+
284
+ # prevent bigger axis from being more than max_size
285
+ if np.round(resize * im_size_max) > self.max_size:
286
+ resize = float(self.max_size) / float(im_size_max)
287
+ resize = 1 if use_origin_size else resize
288
+
289
+ # resize
290
+ if resize != 1:
291
+ if not from_PIL:
292
+ frames = F.interpolate(frames, scale_factor=resize)
293
+ else:
294
+ frames = [
295
+ cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
296
+ for frame in frames
297
+ ]
298
+
299
+ # convert to torch.tensor format
300
+ if not from_PIL:
301
+ frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
302
+ else:
303
+ frames = frames.transpose((0, 3, 1, 2))
304
+ frames = torch.from_numpy(frames)
305
+
306
+ return frames, resize
307
+
308
+ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
309
+ """
310
+ Arguments:
311
+ frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
312
+ type=np.uint8, BGR format).
313
+ conf_threshold: confidence threshold.
314
+ nms_threshold: nms threshold.
315
+ use_origin_size: whether to use origin size.
316
+ Returns:
317
+ final_bounding_boxes: list of np.array ([n_boxes, 5],
318
+ type=np.float32).
319
+ final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
320
+ """
321
+ # self.t['forward_pass'].tic()
322
+ frames, self.resize = self.batched_transform(frames, use_origin_size)
323
+ frames = frames.to(device)
324
+ frames = frames - self.mean_tensor
325
+
326
+ b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
327
+
328
+ final_bounding_boxes, final_landmarks = [], []
329
+
330
+ # decode
331
+ priors = priors.unsqueeze(0)
332
+ b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
333
+ b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
334
+ b_conf = b_conf[:, :, 1]
335
+
336
+ # index for selection
337
+ b_indice = b_conf > conf_threshold
338
+
339
+ # concat
340
+ b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
341
+
342
+ for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
343
+
344
+ # ignore low scores
345
+ pred, landm = pred[inds, :], landm[inds, :]
346
+ if pred.shape[0] == 0:
347
+ final_bounding_boxes.append(np.array([], dtype=np.float32))
348
+ final_landmarks.append(np.array([], dtype=np.float32))
349
+ continue
350
+
351
+ # sort
352
+ # order = score.argsort(descending=True)
353
+ # box, landm, score = box[order], landm[order], score[order]
354
+
355
+ # to CPU
356
+ bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
357
+
358
+ # NMS
359
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
360
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
361
+
362
+ # append
363
+ final_bounding_boxes.append(bounding_boxes)
364
+ final_landmarks.append(landmarks)
365
+ # self.t['forward_pass'].toc(average=True)
366
+ # self.batch_time += self.t['forward_pass'].diff
367
+ # self.total_frame += len(frames)
368
+ # print(self.batch_time / self.total_frame)
369
+
370
+ return final_bounding_boxes, final_landmarks
facelib/detection/retinaface/retinaface_net.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ def conv_bn(inp, oup, stride=1, leaky=0):
7
+ return nn.Sequential(
8
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
9
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
10
+
11
+
12
+ def conv_bn_no_relu(inp, oup, stride):
13
+ return nn.Sequential(
14
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
15
+ nn.BatchNorm2d(oup),
16
+ )
17
+
18
+
19
+ def conv_bn1X1(inp, oup, stride, leaky=0):
20
+ return nn.Sequential(
21
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
22
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
23
+
24
+
25
+ def conv_dw(inp, oup, stride, leaky=0.1):
26
+ return nn.Sequential(
27
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
28
+ nn.BatchNorm2d(inp),
29
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
30
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
31
+ nn.BatchNorm2d(oup),
32
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
33
+ )
34
+
35
+
36
+ class SSH(nn.Module):
37
+
38
+ def __init__(self, in_channel, out_channel):
39
+ super(SSH, self).__init__()
40
+ assert out_channel % 4 == 0
41
+ leaky = 0
42
+ if (out_channel <= 64):
43
+ leaky = 0.1
44
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
45
+
46
+ self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
47
+ self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
48
+
49
+ self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
50
+ self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
51
+
52
+ def forward(self, input):
53
+ conv3X3 = self.conv3X3(input)
54
+
55
+ conv5X5_1 = self.conv5X5_1(input)
56
+ conv5X5 = self.conv5X5_2(conv5X5_1)
57
+
58
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
59
+ conv7X7 = self.conv7x7_3(conv7X7_2)
60
+
61
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
62
+ out = F.relu(out)
63
+ return out
64
+
65
+
66
+ class FPN(nn.Module):
67
+
68
+ def __init__(self, in_channels_list, out_channels):
69
+ super(FPN, self).__init__()
70
+ leaky = 0
71
+ if (out_channels <= 64):
72
+ leaky = 0.1
73
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
74
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
75
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
76
+
77
+ self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
78
+ self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
79
+
80
+ def forward(self, input):
81
+ # names = list(input.keys())
82
+ # input = list(input.values())
83
+
84
+ output1 = self.output1(input[0])
85
+ output2 = self.output2(input[1])
86
+ output3 = self.output3(input[2])
87
+
88
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
89
+ output2 = output2 + up3
90
+ output2 = self.merge2(output2)
91
+
92
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
93
+ output1 = output1 + up2
94
+ output1 = self.merge1(output1)
95
+
96
+ out = [output1, output2, output3]
97
+ return out
98
+
99
+
100
+ class MobileNetV1(nn.Module):
101
+
102
+ def __init__(self):
103
+ super(MobileNetV1, self).__init__()
104
+ self.stage1 = nn.Sequential(
105
+ conv_bn(3, 8, 2, leaky=0.1), # 3
106
+ conv_dw(8, 16, 1), # 7
107
+ conv_dw(16, 32, 2), # 11
108
+ conv_dw(32, 32, 1), # 19
109
+ conv_dw(32, 64, 2), # 27
110
+ conv_dw(64, 64, 1), # 43
111
+ )
112
+ self.stage2 = nn.Sequential(
113
+ conv_dw(64, 128, 2), # 43 + 16 = 59
114
+ conv_dw(128, 128, 1), # 59 + 32 = 91
115
+ conv_dw(128, 128, 1), # 91 + 32 = 123
116
+ conv_dw(128, 128, 1), # 123 + 32 = 155
117
+ conv_dw(128, 128, 1), # 155 + 32 = 187
118
+ conv_dw(128, 128, 1), # 187 + 32 = 219
119
+ )
120
+ self.stage3 = nn.Sequential(
121
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
122
+ conv_dw(256, 256, 1), # 241 + 64 = 301
123
+ )
124
+ self.avg = nn.AdaptiveAvgPool2d((1, 1))
125
+ self.fc = nn.Linear(256, 1000)
126
+
127
+ def forward(self, x):
128
+ x = self.stage1(x)
129
+ x = self.stage2(x)
130
+ x = self.stage3(x)
131
+ x = self.avg(x)
132
+ # x = self.model(x)
133
+ x = x.view(-1, 256)
134
+ x = self.fc(x)
135
+ return x
136
+
137
+
138
+ class ClassHead(nn.Module):
139
+
140
+ def __init__(self, inchannels=512, num_anchors=3):
141
+ super(ClassHead, self).__init__()
142
+ self.num_anchors = num_anchors
143
+ self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
144
+
145
+ def forward(self, x):
146
+ out = self.conv1x1(x)
147
+ out = out.permute(0, 2, 3, 1).contiguous()
148
+
149
+ return out.view(out.shape[0], -1, 2)
150
+
151
+
152
+ class BboxHead(nn.Module):
153
+
154
+ def __init__(self, inchannels=512, num_anchors=3):
155
+ super(BboxHead, self).__init__()
156
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
157
+
158
+ def forward(self, x):
159
+ out = self.conv1x1(x)
160
+ out = out.permute(0, 2, 3, 1).contiguous()
161
+
162
+ return out.view(out.shape[0], -1, 4)
163
+
164
+
165
+ class LandmarkHead(nn.Module):
166
+
167
+ def __init__(self, inchannels=512, num_anchors=3):
168
+ super(LandmarkHead, self).__init__()
169
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
170
+
171
+ def forward(self, x):
172
+ out = self.conv1x1(x)
173
+ out = out.permute(0, 2, 3, 1).contiguous()
174
+
175
+ return out.view(out.shape[0], -1, 10)
176
+
177
+
178
+ def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
179
+ classhead = nn.ModuleList()
180
+ for i in range(fpn_num):
181
+ classhead.append(ClassHead(inchannels, anchor_num))
182
+ return classhead
183
+
184
+
185
+ def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
186
+ bboxhead = nn.ModuleList()
187
+ for i in range(fpn_num):
188
+ bboxhead.append(BboxHead(inchannels, anchor_num))
189
+ return bboxhead
190
+
191
+
192
+ def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
193
+ landmarkhead = nn.ModuleList()
194
+ for i in range(fpn_num):
195
+ landmarkhead.append(LandmarkHead(inchannels, anchor_num))
196
+ return landmarkhead
facelib/detection/retinaface/retinaface_utils.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision
4
+ from itertools import product as product
5
+ from math import ceil
6
+
7
+
8
+ class PriorBox(object):
9
+
10
+ def __init__(self, cfg, image_size=None, phase='train'):
11
+ super(PriorBox, self).__init__()
12
+ self.min_sizes = cfg['min_sizes']
13
+ self.steps = cfg['steps']
14
+ self.clip = cfg['clip']
15
+ self.image_size = image_size
16
+ self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
17
+ self.name = 's'
18
+
19
+ def forward(self):
20
+ anchors = []
21
+ for k, f in enumerate(self.feature_maps):
22
+ min_sizes = self.min_sizes[k]
23
+ for i, j in product(range(f[0]), range(f[1])):
24
+ for min_size in min_sizes:
25
+ s_kx = min_size / self.image_size[1]
26
+ s_ky = min_size / self.image_size[0]
27
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
28
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
29
+ for cy, cx in product(dense_cy, dense_cx):
30
+ anchors += [cx, cy, s_kx, s_ky]
31
+
32
+ # back to torch land
33
+ output = torch.Tensor(anchors).view(-1, 4)
34
+ if self.clip:
35
+ output.clamp_(max=1, min=0)
36
+ return output
37
+
38
+
39
+ def py_cpu_nms(dets, thresh):
40
+ """Pure Python NMS baseline."""
41
+ keep = torchvision.ops.nms(
42
+ boxes=torch.Tensor(dets[:, :4]),
43
+ scores=torch.Tensor(dets[:, 4]),
44
+ iou_threshold=thresh,
45
+ )
46
+
47
+ return list(keep)
48
+
49
+
50
+ def point_form(boxes):
51
+ """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
52
+ representation for comparison to point form ground truth data.
53
+ Args:
54
+ boxes: (tensor) center-size default boxes from priorbox layers.
55
+ Return:
56
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
57
+ """
58
+ return torch.cat(
59
+ (
60
+ boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
61
+ boxes[:, :2] + boxes[:, 2:] / 2),
62
+ 1) # xmax, ymax
63
+
64
+
65
+ def center_size(boxes):
66
+ """ Convert prior_boxes to (cx, cy, w, h)
67
+ representation for comparison to center-size form ground truth data.
68
+ Args:
69
+ boxes: (tensor) point_form boxes
70
+ Return:
71
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
72
+ """
73
+ return torch.cat(
74
+ (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
75
+ boxes[:, 2:] - boxes[:, :2],
76
+ 1) # w, h
77
+
78
+
79
+ def intersect(box_a, box_b):
80
+ """ We resize both tensors to [A,B,2] without new malloc:
81
+ [A,2] -> [A,1,2] -> [A,B,2]
82
+ [B,2] -> [1,B,2] -> [A,B,2]
83
+ Then we compute the area of intersect between box_a and box_b.
84
+ Args:
85
+ box_a: (tensor) bounding boxes, Shape: [A,4].
86
+ box_b: (tensor) bounding boxes, Shape: [B,4].
87
+ Return:
88
+ (tensor) intersection area, Shape: [A,B].
89
+ """
90
+ A = box_a.size(0)
91
+ B = box_b.size(0)
92
+ max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
93
+ min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
94
+ inter = torch.clamp((max_xy - min_xy), min=0)
95
+ return inter[:, :, 0] * inter[:, :, 1]
96
+
97
+
98
+ def jaccard(box_a, box_b):
99
+ """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
100
+ is simply the intersection over union of two boxes. Here we operate on
101
+ ground truth boxes and default boxes.
102
+ E.g.:
103
+ A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
104
+ Args:
105
+ box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
106
+ box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
107
+ Return:
108
+ jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
109
+ """
110
+ inter = intersect(box_a, box_b)
111
+ area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
112
+ area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
113
+ union = area_a + area_b - inter
114
+ return inter / union # [A,B]
115
+
116
+
117
+ def matrix_iou(a, b):
118
+ """
119
+ return iou of a and b, numpy version for data augenmentation
120
+ """
121
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
122
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
123
+
124
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
125
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
126
+ area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
127
+ return area_i / (area_a[:, np.newaxis] + area_b - area_i)
128
+
129
+
130
+ def matrix_iof(a, b):
131
+ """
132
+ return iof of a and b, numpy version for data augenmentation
133
+ """
134
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
135
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
136
+
137
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
138
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
139
+ return area_i / np.maximum(area_a[:, np.newaxis], 1)
140
+
141
+
142
+ def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
143
+ """Match each prior box with the ground truth box of the highest jaccard
144
+ overlap, encode the bounding boxes, then return the matched indices
145
+ corresponding to both confidence and location preds.
146
+ Args:
147
+ threshold: (float) The overlap threshold used when matching boxes.
148
+ truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
149
+ priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
150
+ variances: (tensor) Variances corresponding to each prior coord,
151
+ Shape: [num_priors, 4].
152
+ labels: (tensor) All the class labels for the image, Shape: [num_obj].
153
+ landms: (tensor) Ground truth landms, Shape [num_obj, 10].
154
+ loc_t: (tensor) Tensor to be filled w/ encoded location targets.
155
+ conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
156
+ landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
157
+ idx: (int) current batch index
158
+ Return:
159
+ The matched indices corresponding to 1)location 2)confidence
160
+ 3)landm preds.
161
+ """
162
+ # jaccard index
163
+ overlaps = jaccard(truths, point_form(priors))
164
+ # (Bipartite Matching)
165
+ # [1,num_objects] best prior for each ground truth
166
+ best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
167
+
168
+ # ignore hard gt
169
+ valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
170
+ best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
171
+ if best_prior_idx_filter.shape[0] <= 0:
172
+ loc_t[idx] = 0
173
+ conf_t[idx] = 0
174
+ return
175
+
176
+ # [1,num_priors] best ground truth for each prior
177
+ best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
178
+ best_truth_idx.squeeze_(0)
179
+ best_truth_overlap.squeeze_(0)
180
+ best_prior_idx.squeeze_(1)
181
+ best_prior_idx_filter.squeeze_(1)
182
+ best_prior_overlap.squeeze_(1)
183
+ best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
184
+ # TODO refactor: index best_prior_idx with long tensor
185
+ # ensure every gt matches with its prior of max overlap
186
+ for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
187
+ best_truth_idx[best_prior_idx[j]] = j
188
+ matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
189
+ conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
190
+ conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
191
+ loc = encode(matches, priors, variances)
192
+
193
+ matches_landm = landms[best_truth_idx]
194
+ landm = encode_landm(matches_landm, priors, variances)
195
+ loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
196
+ conf_t[idx] = conf # [num_priors] top class label for each prior
197
+ landm_t[idx] = landm
198
+
199
+
200
+ def encode(matched, priors, variances):
201
+ """Encode the variances from the priorbox layers into the ground truth boxes
202
+ we have matched (based on jaccard overlap) with the prior boxes.
203
+ Args:
204
+ matched: (tensor) Coords of ground truth for each prior in point-form
205
+ Shape: [num_priors, 4].
206
+ priors: (tensor) Prior boxes in center-offset form
207
+ Shape: [num_priors,4].
208
+ variances: (list[float]) Variances of priorboxes
209
+ Return:
210
+ encoded boxes (tensor), Shape: [num_priors, 4]
211
+ """
212
+
213
+ # dist b/t match center and prior's center
214
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
215
+ # encode variance
216
+ g_cxcy /= (variances[0] * priors[:, 2:])
217
+ # match wh / prior wh
218
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
219
+ g_wh = torch.log(g_wh) / variances[1]
220
+ # return target for smooth_l1_loss
221
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
222
+
223
+
224
+ def encode_landm(matched, priors, variances):
225
+ """Encode the variances from the priorbox layers into the ground truth boxes
226
+ we have matched (based on jaccard overlap) with the prior boxes.
227
+ Args:
228
+ matched: (tensor) Coords of ground truth for each prior in point-form
229
+ Shape: [num_priors, 10].
230
+ priors: (tensor) Prior boxes in center-offset form
231
+ Shape: [num_priors,4].
232
+ variances: (list[float]) Variances of priorboxes
233
+ Return:
234
+ encoded landm (tensor), Shape: [num_priors, 10]
235
+ """
236
+
237
+ # dist b/t match center and prior's center
238
+ matched = torch.reshape(matched, (matched.size(0), 5, 2))
239
+ priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
240
+ priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
241
+ priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
242
+ priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
243
+ priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
244
+ g_cxcy = matched[:, :, :2] - priors[:, :, :2]
245
+ # encode variance
246
+ g_cxcy /= (variances[0] * priors[:, :, 2:])
247
+ # g_cxcy /= priors[:, :, 2:]
248
+ g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
249
+ # return target for smooth_l1_loss
250
+ return g_cxcy
251
+
252
+
253
+ # Adapted from https://github.com/Hakuyume/chainer-ssd
254
+ def decode(loc, priors, variances):
255
+ """Decode locations from predictions using priors to undo
256
+ the encoding we did for offset regression at train time.
257
+ Args:
258
+ loc (tensor): location predictions for loc layers,
259
+ Shape: [num_priors,4]
260
+ priors (tensor): Prior boxes in center-offset form.
261
+ Shape: [num_priors,4].
262
+ variances: (list[float]) Variances of priorboxes
263
+ Return:
264
+ decoded bounding box predictions
265
+ """
266
+
267
+ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
268
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
269
+ boxes[:, :2] -= boxes[:, 2:] / 2
270
+ boxes[:, 2:] += boxes[:, :2]
271
+ return boxes
272
+
273
+
274
+ def decode_landm(pre, priors, variances):
275
+ """Decode landm from predictions using priors to undo
276
+ the encoding we did for offset regression at train time.
277
+ Args:
278
+ pre (tensor): landm predictions for loc layers,
279
+ Shape: [num_priors,10]
280
+ priors (tensor): Prior boxes in center-offset form.
281
+ Shape: [num_priors,4].
282
+ variances: (list[float]) Variances of priorboxes
283
+ Return:
284
+ decoded landm predictions
285
+ """
286
+ tmp = (
287
+ priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
288
+ priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
289
+ priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
290
+ priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
291
+ priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
292
+ )
293
+ landms = torch.cat(tmp, dim=1)
294
+ return landms
295
+
296
+
297
+ def batched_decode(b_loc, priors, variances):
298
+ """Decode locations from predictions using priors to undo
299
+ the encoding we did for offset regression at train time.
300
+ Args:
301
+ b_loc (tensor): location predictions for loc layers,
302
+ Shape: [num_batches,num_priors,4]
303
+ priors (tensor): Prior boxes in center-offset form.
304
+ Shape: [1,num_priors,4].
305
+ variances: (list[float]) Variances of priorboxes
306
+ Return:
307
+ decoded bounding box predictions
308
+ """
309
+ boxes = (
310
+ priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
311
+ priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
312
+ )
313
+ boxes = torch.cat(boxes, dim=2)
314
+
315
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
316
+ boxes[:, :, 2:] += boxes[:, :, :2]
317
+ return boxes
318
+
319
+
320
+ def batched_decode_landm(pre, priors, variances):
321
+ """Decode landm from predictions using priors to undo
322
+ the encoding we did for offset regression at train time.
323
+ Args:
324
+ pre (tensor): landm predictions for loc layers,
325
+ Shape: [num_batches,num_priors,10]
326
+ priors (tensor): Prior boxes in center-offset form.
327
+ Shape: [1,num_priors,4].
328
+ variances: (list[float]) Variances of priorboxes
329
+ Return:
330
+ decoded landm predictions
331
+ """
332
+ landms = (
333
+ priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
334
+ priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
335
+ priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
336
+ priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
337
+ priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
338
+ )
339
+ landms = torch.cat(landms, dim=2)
340
+ return landms
341
+
342
+
343
+ def log_sum_exp(x):
344
+ """Utility function for computing log_sum_exp while determining
345
+ This will be used to determine unaveraged confidence loss across
346
+ all examples in a batch.
347
+ Args:
348
+ x (Variable(tensor)): conf_preds from conf layers
349
+ """
350
+ x_max = x.data.max()
351
+ return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
352
+
353
+
354
+ # Original author: Francisco Massa:
355
+ # https://github.com/fmassa/object-detection.torch
356
+ # Ported to PyTorch by Max deGroot (02/01/2017)
357
+ def nms(boxes, scores, overlap=0.5, top_k=200):
358
+ """Apply non-maximum suppression at test time to avoid detecting too many
359
+ overlapping bounding boxes for a given object.
360
+ Args:
361
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
362
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
363
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
364
+ top_k: (int) The Maximum number of box preds to consider.
365
+ Return:
366
+ The indices of the kept boxes with respect to num_priors.
367
+ """
368
+
369
+ keep = torch.Tensor(scores.size(0)).fill_(0).long()
370
+ if boxes.numel() == 0:
371
+ return keep
372
+ x1 = boxes[:, 0]
373
+ y1 = boxes[:, 1]
374
+ x2 = boxes[:, 2]
375
+ y2 = boxes[:, 3]
376
+ area = torch.mul(x2 - x1, y2 - y1)
377
+ v, idx = scores.sort(0) # sort in ascending order
378
+ # I = I[v >= 0.01]
379
+ idx = idx[-top_k:] # indices of the top-k largest vals
380
+ xx1 = boxes.new()
381
+ yy1 = boxes.new()
382
+ xx2 = boxes.new()
383
+ yy2 = boxes.new()
384
+ w = boxes.new()
385
+ h = boxes.new()
386
+
387
+ # keep = torch.Tensor()
388
+ count = 0
389
+ while idx.numel() > 0:
390
+ i = idx[-1] # index of current largest val
391
+ # keep.append(i)
392
+ keep[count] = i
393
+ count += 1
394
+ if idx.size(0) == 1:
395
+ break
396
+ idx = idx[:-1] # remove kept element from view
397
+ # load bboxes of next highest vals
398
+ torch.index_select(x1, 0, idx, out=xx1)
399
+ torch.index_select(y1, 0, idx, out=yy1)
400
+ torch.index_select(x2, 0, idx, out=xx2)
401
+ torch.index_select(y2, 0, idx, out=yy2)
402
+ # store element-wise max with next highest score
403
+ xx1 = torch.clamp(xx1, min=x1[i])
404
+ yy1 = torch.clamp(yy1, min=y1[i])
405
+ xx2 = torch.clamp(xx2, max=x2[i])
406
+ yy2 = torch.clamp(yy2, max=y2[i])
407
+ w.resize_as_(xx2)
408
+ h.resize_as_(yy2)
409
+ w = xx2 - xx1
410
+ h = yy2 - yy1
411
+ # check sizes of xx1 and xx2.. after each iteration
412
+ w = torch.clamp(w, min=0.0)
413
+ h = torch.clamp(h, min=0.0)
414
+ inter = w * h
415
+ # IoU = i / (area(a) + area(b) - i)
416
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
417
+ union = (rem_areas - inter) + area[i]
418
+ IoU = inter / union # store result in iou
419
+ # keep only elements with an IoU <= overlap
420
+ idx = idx[IoU.le(overlap)]
421
+ return keep, count
facelib/detection/yolov5face/__init__.py ADDED
File without changes
facelib/detection/yolov5face/face_detector.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+
10
+ from facelib.detection.yolov5face.models.common import Conv
11
+ from facelib.detection.yolov5face.models.yolo import Model
12
+ from facelib.detection.yolov5face.utils.datasets import letterbox
13
+ from facelib.detection.yolov5face.utils.general import (
14
+ check_img_size,
15
+ non_max_suppression_face,
16
+ scale_coords,
17
+ scale_coords_landmarks,
18
+ )
19
+
20
+ IS_HIGH_VERSION = tuple(map(int, torch.__version__.split('+')[0].split('.')[:3])) >= (1, 9, 0)
21
+
22
+
23
+ def isListempty(inList):
24
+ if isinstance(inList, list): # Is a list
25
+ return all(map(isListempty, inList))
26
+ return False # Not a list
27
+
28
+ class YoloDetector:
29
+ def __init__(
30
+ self,
31
+ config_name,
32
+ min_face=10,
33
+ target_size=None,
34
+ device='cuda',
35
+ ):
36
+ """
37
+ config_name: name of .yaml config with network configuration from models/ folder.
38
+ min_face : minimal face size in pixels.
39
+ target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080.
40
+ None for original resolution.
41
+ """
42
+ self._class_path = Path(__file__).parent.absolute()
43
+ self.target_size = target_size
44
+ self.min_face = min_face
45
+ self.detector = Model(cfg=config_name)
46
+ self.device = device
47
+
48
+
49
+ def _preprocess(self, imgs):
50
+ """
51
+ Preprocessing image before passing through the network. Resize and conversion to torch tensor.
52
+ """
53
+ pp_imgs = []
54
+ for img in imgs:
55
+ h0, w0 = img.shape[:2] # orig hw
56
+ if self.target_size:
57
+ r = self.target_size / min(h0, w0) # resize image to img_size
58
+ if r < 1:
59
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
60
+
61
+ imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
62
+ img = letterbox(img, new_shape=imgsz)[0]
63
+ pp_imgs.append(img)
64
+ pp_imgs = np.array(pp_imgs)
65
+ pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
66
+ pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
67
+ pp_imgs = pp_imgs.float() # uint8 to fp16/32
68
+ return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0
69
+
70
+ def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
71
+ """
72
+ Postprocessing of raw pytorch model output.
73
+ Returns:
74
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
75
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
76
+ """
77
+ bboxes = [[] for _ in range(len(origimgs))]
78
+ landmarks = [[] for _ in range(len(origimgs))]
79
+
80
+ pred = non_max_suppression_face(pred, conf_thres, iou_thres)
81
+
82
+ for image_id, origimg in enumerate(origimgs):
83
+ img_shape = origimg.shape
84
+ image_height, image_width = img_shape[:2]
85
+ gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
86
+ gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
87
+ det = pred[image_id].cpu()
88
+ scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round()
89
+ scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round()
90
+
91
+ for j in range(det.size()[0]):
92
+ box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
93
+ box = list(
94
+ map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height])
95
+ )
96
+ if box[3] - box[1] < self.min_face:
97
+ continue
98
+ lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
99
+ lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)]))
100
+ lm = [lm[i : i + 2] for i in range(0, len(lm), 2)]
101
+ bboxes[image_id].append(box)
102
+ landmarks[image_id].append(lm)
103
+ return bboxes, landmarks
104
+
105
+ def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5):
106
+ """
107
+ Get bbox coordinates and keypoints of faces on original image.
108
+ Params:
109
+ imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference)
110
+ conf_thres: confidence threshold for each prediction
111
+ iou_thres: threshold for NMS (filter of intersecting bboxes)
112
+ Returns:
113
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
114
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
115
+ """
116
+ # Pass input images through face detector
117
+ images = imgs if isinstance(imgs, list) else [imgs]
118
+ images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images]
119
+ origimgs = copy.deepcopy(images)
120
+
121
+ images = self._preprocess(images)
122
+
123
+ if IS_HIGH_VERSION:
124
+ with torch.inference_mode(): # for pytorch>=1.9
125
+ pred = self.detector(images)[0]
126
+ else:
127
+ with torch.no_grad(): # for pytorch<1.9
128
+ pred = self.detector(images)[0]
129
+
130
+ bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
131
+
132
+ # return bboxes, points
133
+ if not isListempty(points):
134
+ bboxes = np.array(bboxes).reshape(-1,4)
135
+ points = np.array(points).reshape(-1,10)
136
+ padding = bboxes[:,0].reshape(-1,1)
137
+ return np.concatenate((bboxes, padding, points), axis=1)
138
+ else:
139
+ return None
140
+
141
+ def __call__(self, *args):
142
+ return self.predict(*args)
facelib/detection/yolov5face/models/__init__.py ADDED
File without changes
facelib/detection/yolov5face/models/common.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains modules common to various models
2
+
3
+ import math
4
+
5
+ import numpy as np
6
+ import torch
7
+ from torch import nn
8
+
9
+ from facelib.detection.yolov5face.utils.datasets import letterbox
10
+ from facelib.detection.yolov5face.utils.general import (
11
+ make_divisible,
12
+ non_max_suppression,
13
+ scale_coords,
14
+ xyxy2xywh,
15
+ )
16
+
17
+
18
+ def autopad(k, p=None): # kernel, padding
19
+ # Pad to 'same'
20
+ if p is None:
21
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
22
+ return p
23
+
24
+
25
+ def channel_shuffle(x, groups):
26
+ batchsize, num_channels, height, width = x.data.size()
27
+ channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc")
28
+
29
+ # reshape
30
+ x = x.view(batchsize, groups, channels_per_group, height, width)
31
+ x = torch.transpose(x, 1, 2).contiguous()
32
+
33
+ # flatten
34
+ return x.view(batchsize, -1, height, width)
35
+
36
+
37
+ def DWConv(c1, c2, k=1, s=1, act=True):
38
+ # Depthwise convolution
39
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
40
+
41
+
42
+ class Conv(nn.Module):
43
+ # Standard convolution
44
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
45
+ super().__init__()
46
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
47
+ self.bn = nn.BatchNorm2d(c2)
48
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
49
+
50
+ def forward(self, x):
51
+ return self.act(self.bn(self.conv(x)))
52
+
53
+ def fuseforward(self, x):
54
+ return self.act(self.conv(x))
55
+
56
+
57
+ class StemBlock(nn.Module):
58
+ def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
59
+ super().__init__()
60
+ self.stem_1 = Conv(c1, c2, k, s, p, g, act)
61
+ self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
62
+ self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
63
+ self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
64
+ self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
65
+
66
+ def forward(self, x):
67
+ stem_1_out = self.stem_1(x)
68
+ stem_2a_out = self.stem_2a(stem_1_out)
69
+ stem_2b_out = self.stem_2b(stem_2a_out)
70
+ stem_2p_out = self.stem_2p(stem_1_out)
71
+ return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1))
72
+
73
+
74
+ class Bottleneck(nn.Module):
75
+ # Standard bottleneck
76
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
77
+ super().__init__()
78
+ c_ = int(c2 * e) # hidden channels
79
+ self.cv1 = Conv(c1, c_, 1, 1)
80
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
81
+ self.add = shortcut and c1 == c2
82
+
83
+ def forward(self, x):
84
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
85
+
86
+
87
+ class BottleneckCSP(nn.Module):
88
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
89
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
90
+ super().__init__()
91
+ c_ = int(c2 * e) # hidden channels
92
+ self.cv1 = Conv(c1, c_, 1, 1)
93
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
94
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
95
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
96
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
97
+ self.act = nn.LeakyReLU(0.1, inplace=True)
98
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
99
+
100
+ def forward(self, x):
101
+ y1 = self.cv3(self.m(self.cv1(x)))
102
+ y2 = self.cv2(x)
103
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
104
+
105
+
106
+ class C3(nn.Module):
107
+ # CSP Bottleneck with 3 convolutions
108
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
109
+ super().__init__()
110
+ c_ = int(c2 * e) # hidden channels
111
+ self.cv1 = Conv(c1, c_, 1, 1)
112
+ self.cv2 = Conv(c1, c_, 1, 1)
113
+ self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
114
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
115
+
116
+ def forward(self, x):
117
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
118
+
119
+
120
+ class ShuffleV2Block(nn.Module):
121
+ def __init__(self, inp, oup, stride):
122
+ super().__init__()
123
+
124
+ if not 1 <= stride <= 3:
125
+ raise ValueError("illegal stride value")
126
+ self.stride = stride
127
+
128
+ branch_features = oup // 2
129
+
130
+ if self.stride > 1:
131
+ self.branch1 = nn.Sequential(
132
+ self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
133
+ nn.BatchNorm2d(inp),
134
+ nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
135
+ nn.BatchNorm2d(branch_features),
136
+ nn.SiLU(),
137
+ )
138
+ else:
139
+ self.branch1 = nn.Sequential()
140
+
141
+ self.branch2 = nn.Sequential(
142
+ nn.Conv2d(
143
+ inp if (self.stride > 1) else branch_features,
144
+ branch_features,
145
+ kernel_size=1,
146
+ stride=1,
147
+ padding=0,
148
+ bias=False,
149
+ ),
150
+ nn.BatchNorm2d(branch_features),
151
+ nn.SiLU(),
152
+ self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
153
+ nn.BatchNorm2d(branch_features),
154
+ nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
155
+ nn.BatchNorm2d(branch_features),
156
+ nn.SiLU(),
157
+ )
158
+
159
+ @staticmethod
160
+ def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
161
+ return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
162
+
163
+ def forward(self, x):
164
+ if self.stride == 1:
165
+ x1, x2 = x.chunk(2, dim=1)
166
+ out = torch.cat((x1, self.branch2(x2)), dim=1)
167
+ else:
168
+ out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
169
+ out = channel_shuffle(out, 2)
170
+ return out
171
+
172
+
173
+ class SPP(nn.Module):
174
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
175
+ def __init__(self, c1, c2, k=(5, 9, 13)):
176
+ super().__init__()
177
+ c_ = c1 // 2 # hidden channels
178
+ self.cv1 = Conv(c1, c_, 1, 1)
179
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
180
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
181
+
182
+ def forward(self, x):
183
+ x = self.cv1(x)
184
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
185
+
186
+
187
+ class Focus(nn.Module):
188
+ # Focus wh information into c-space
189
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
190
+ super().__init__()
191
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
192
+
193
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
194
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
195
+
196
+
197
+ class Concat(nn.Module):
198
+ # Concatenate a list of tensors along dimension
199
+ def __init__(self, dimension=1):
200
+ super().__init__()
201
+ self.d = dimension
202
+
203
+ def forward(self, x):
204
+ return torch.cat(x, self.d)
205
+
206
+
207
+ class NMS(nn.Module):
208
+ # Non-Maximum Suppression (NMS) module
209
+ conf = 0.25 # confidence threshold
210
+ iou = 0.45 # IoU threshold
211
+ classes = None # (optional list) filter by class
212
+
213
+ def forward(self, x):
214
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
215
+
216
+
217
+ class AutoShape(nn.Module):
218
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
219
+ img_size = 640 # inference size (pixels)
220
+ conf = 0.25 # NMS confidence threshold
221
+ iou = 0.45 # NMS IoU threshold
222
+ classes = None # (optional list) filter by class
223
+
224
+ def __init__(self, model):
225
+ super().__init__()
226
+ self.model = model.eval()
227
+
228
+ def autoshape(self):
229
+ print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
230
+ return self
231
+
232
+ def forward(self, imgs, size=640, augment=False, profile=False):
233
+ # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
234
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
235
+ # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
236
+ # numpy: = np.zeros((720,1280,3)) # HWC
237
+ # torch: = torch.zeros(16,3,720,1280) # BCHW
238
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
239
+
240
+ p = next(self.model.parameters()) # for device and type
241
+ if isinstance(imgs, torch.Tensor): # torch
242
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
243
+
244
+ # Pre-process
245
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
246
+ shape0, shape1 = [], [] # image and inference shapes
247
+ for i, im in enumerate(imgs):
248
+ im = np.array(im) # to numpy
249
+ if im.shape[0] < 5: # image in CHW
250
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
251
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
252
+ s = im.shape[:2] # HWC
253
+ shape0.append(s) # image shape
254
+ g = size / max(s) # gain
255
+ shape1.append([y * g for y in s])
256
+ imgs[i] = im # update
257
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
258
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
259
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
260
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
261
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
262
+
263
+ # Inference
264
+ with torch.no_grad():
265
+ y = self.model(x, augment, profile)[0] # forward
266
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
267
+
268
+ # Post-process
269
+ for i in range(n):
270
+ scale_coords(shape1, y[i][:, :4], shape0[i])
271
+
272
+ return Detections(imgs, y, self.names)
273
+
274
+
275
+ class Detections:
276
+ # detections class for YOLOv5 inference results
277
+ def __init__(self, imgs, pred, names=None):
278
+ super().__init__()
279
+ d = pred[0].device # device
280
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations
281
+ self.imgs = imgs # list of images as numpy arrays
282
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
283
+ self.names = names # class names
284
+ self.xyxy = pred # xyxy pixels
285
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
286
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
287
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
288
+ self.n = len(self.pred)
289
+
290
+ def __len__(self):
291
+ return self.n
292
+
293
+ def tolist(self):
294
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
295
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
296
+ for d in x:
297
+ for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
298
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
299
+ return x
facelib/detection/yolov5face/models/experimental.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # This file contains experimental modules
2
+
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+
7
+ from facelib.detection.yolov5face.models.common import Conv
8
+
9
+
10
+ class CrossConv(nn.Module):
11
+ # Cross Convolution Downsample
12
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
+ super().__init__()
15
+ c_ = int(c2 * e) # hidden channels
16
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
+ self.add = shortcut and c1 == c2
19
+
20
+ def forward(self, x):
21
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
+
23
+
24
+ class MixConv2d(nn.Module):
25
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
26
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
27
+ super().__init__()
28
+ groups = len(k)
29
+ if equal_ch: # equal c_ per group
30
+ i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
31
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
32
+ else: # equal weight.numel() per group
33
+ b = [c2] + [0] * groups
34
+ a = np.eye(groups + 1, groups, k=-1)
35
+ a -= np.roll(a, 1, axis=1)
36
+ a *= np.array(k) ** 2
37
+ a[0] = 1
38
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
39
+
40
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
41
+ self.bn = nn.BatchNorm2d(c2)
42
+ self.act = nn.LeakyReLU(0.1, inplace=True)
43
+
44
+ def forward(self, x):
45
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
facelib/detection/yolov5face/models/yolo.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from copy import deepcopy
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ import yaml # for torch hub
7
+ from torch import nn
8
+
9
+ from facelib.detection.yolov5face.models.common import (
10
+ C3,
11
+ NMS,
12
+ SPP,
13
+ AutoShape,
14
+ Bottleneck,
15
+ BottleneckCSP,
16
+ Concat,
17
+ Conv,
18
+ DWConv,
19
+ Focus,
20
+ ShuffleV2Block,
21
+ StemBlock,
22
+ )
23
+ from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d
24
+ from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
25
+ from facelib.detection.yolov5face.utils.general import make_divisible
26
+ from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn
27
+
28
+
29
+ class Detect(nn.Module):
30
+ stride = None # strides computed during build
31
+ export = False # onnx export
32
+
33
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
34
+ super().__init__()
35
+ self.nc = nc # number of classes
36
+ self.no = nc + 5 + 10 # number of outputs per anchor
37
+
38
+ self.nl = len(anchors) # number of detection layers
39
+ self.na = len(anchors[0]) // 2 # number of anchors
40
+ self.grid = [torch.zeros(1)] * self.nl # init grid
41
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
42
+ self.register_buffer("anchors", a) # shape(nl,na,2)
43
+ self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
44
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
45
+
46
+ def forward(self, x):
47
+ z = [] # inference output
48
+ if self.export:
49
+ for i in range(self.nl):
50
+ x[i] = self.m[i](x[i])
51
+ return x
52
+ for i in range(self.nl):
53
+ x[i] = self.m[i](x[i]) # conv
54
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
55
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
56
+
57
+ if not self.training: # inference
58
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
59
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
60
+
61
+ y = torch.full_like(x[i], 0)
62
+ y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
63
+ y[..., 5:15] = x[i][..., 5:15]
64
+
65
+ y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
66
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
67
+
68
+ y[..., 5:7] = (
69
+ y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
70
+ ) # landmark x1 y1
71
+ y[..., 7:9] = (
72
+ y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
73
+ ) # landmark x2 y2
74
+ y[..., 9:11] = (
75
+ y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
76
+ ) # landmark x3 y3
77
+ y[..., 11:13] = (
78
+ y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
79
+ ) # landmark x4 y4
80
+ y[..., 13:15] = (
81
+ y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
82
+ ) # landmark x5 y5
83
+
84
+ z.append(y.view(bs, -1, self.no))
85
+
86
+ return x if self.training else (torch.cat(z, 1), x)
87
+
88
+ @staticmethod
89
+ def _make_grid(nx=20, ny=20):
90
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
91
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
92
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
93
+
94
+
95
+ class Model(nn.Module):
96
+ def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes
97
+ super().__init__()
98
+ self.yaml_file = Path(cfg).name
99
+ with Path(cfg).open(encoding="utf8") as f:
100
+ self.yaml = yaml.safe_load(f) # model dict
101
+
102
+ # Define model
103
+ ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
104
+ if nc and nc != self.yaml["nc"]:
105
+ self.yaml["nc"] = nc # override yaml value
106
+
107
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
108
+ self.names = [str(i) for i in range(self.yaml["nc"])] # default names
109
+
110
+ # Build strides, anchors
111
+ m = self.model[-1] # Detect()
112
+ if isinstance(m, Detect):
113
+ s = 128 # 2x min stride
114
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
115
+ m.anchors /= m.stride.view(-1, 1, 1)
116
+ check_anchor_order(m)
117
+ self.stride = m.stride
118
+ self._initialize_biases() # only run once
119
+
120
+ def forward(self, x):
121
+ return self.forward_once(x) # single-scale inference, train
122
+
123
+ def forward_once(self, x):
124
+ y = [] # outputs
125
+ for m in self.model:
126
+ if m.f != -1: # if not from previous layer
127
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
128
+
129
+ x = m(x) # run
130
+ y.append(x if m.i in self.save else None) # save output
131
+
132
+ return x
133
+
134
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
135
+ # https://arxiv.org/abs/1708.02002 section 3.3
136
+ m = self.model[-1] # Detect() module
137
+ for mi, s in zip(m.m, m.stride): # from
138
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
139
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
140
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
141
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
142
+
143
+ def _print_biases(self):
144
+ m = self.model[-1] # Detect() module
145
+ for mi in m.m: # from
146
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
147
+ print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
148
+
149
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
150
+ print("Fusing layers... ")
151
+ for m in self.model.modules():
152
+ if isinstance(m, Conv) and hasattr(m, "bn"):
153
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
154
+ delattr(m, "bn") # remove batchnorm
155
+ m.forward = m.fuseforward # update forward
156
+ elif type(m) is nn.Upsample:
157
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
158
+ return self
159
+
160
+ def nms(self, mode=True): # add or remove NMS module
161
+ present = isinstance(self.model[-1], NMS) # last layer is NMS
162
+ if mode and not present:
163
+ print("Adding NMS... ")
164
+ m = NMS() # module
165
+ m.f = -1 # from
166
+ m.i = self.model[-1].i + 1 # index
167
+ self.model.add_module(name=str(m.i), module=m) # add
168
+ self.eval()
169
+ elif not mode and present:
170
+ print("Removing NMS... ")
171
+ self.model = self.model[:-1] # remove
172
+ return self
173
+
174
+ def autoshape(self): # add autoShape module
175
+ print("Adding autoShape... ")
176
+ m = AutoShape(self) # wrap model
177
+ copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
178
+ return m
179
+
180
+
181
+ def parse_model(d, ch): # model_dict, input_channels(3)
182
+ anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
183
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
184
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
185
+
186
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
187
+ for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
188
+ m = eval(m) if isinstance(m, str) else m # eval strings
189
+ for j, a in enumerate(args):
190
+ try:
191
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
192
+ except:
193
+ pass
194
+
195
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
196
+ if m in [
197
+ Conv,
198
+ Bottleneck,
199
+ SPP,
200
+ DWConv,
201
+ MixConv2d,
202
+ Focus,
203
+ CrossConv,
204
+ BottleneckCSP,
205
+ C3,
206
+ ShuffleV2Block,
207
+ StemBlock,
208
+ ]:
209
+ c1, c2 = ch[f], args[0]
210
+
211
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
212
+
213
+ args = [c1, c2, *args[1:]]
214
+ if m in [BottleneckCSP, C3]:
215
+ args.insert(2, n)
216
+ n = 1
217
+ elif m is nn.BatchNorm2d:
218
+ args = [ch[f]]
219
+ elif m is Concat:
220
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
221
+ elif m is Detect:
222
+ args.append([ch[x + 1] for x in f])
223
+ if isinstance(args[1], int): # number of anchors
224
+ args[1] = [list(range(args[1] * 2))] * len(f)
225
+ else:
226
+ c2 = ch[f]
227
+
228
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
229
+ t = str(m)[8:-2].replace("__main__.", "") # module type
230
+ np = sum(x.numel() for x in m_.parameters()) # number params
231
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
232
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
233
+ layers.append(m_)
234
+ ch.append(c2)
235
+ return nn.Sequential(*layers), sorted(save)
facelib/detection/yolov5face/models/yolov5l.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
16
+ [-1, 3, C3, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 9, C3, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
20
+ [-1, 9, C3, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
22
+ [-1, 1, SPP, [1024, [3,5,7]]],
23
+ [-1, 3, C3, [1024, False]], # 8
24
+ ]
25
+
26
+ # YOLOv5 head
27
+ head:
28
+ [[-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
31
+ [-1, 3, C3, [512, False]], # 12
32
+
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
36
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
37
+
38
+ [-1, 1, Conv, [256, 3, 2]],
39
+ [[-1, 13], 1, Concat, [1]], # cat head P4
40
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
41
+
42
+ [-1, 1, Conv, [512, 3, 2]],
43
+ [[-1, 9], 1, Concat, [1]], # cat head P5
44
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
45
+
46
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
47
+ ]
facelib/detection/yolov5face/models/yolov5n.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
16
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
17
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
18
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
19
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
20
+ [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
21
+ [-1, 3, ShuffleV2Block, [512, 1]], # 6
22
+ ]
23
+
24
+ # YOLOv5 head
25
+ head:
26
+ [[-1, 1, Conv, [128, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 1, C3, [128, False]], # 10
30
+
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 1, C3, [128, False]], # 14 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 3, 2]],
37
+ [[-1, 11], 1, Concat, [1]], # cat head P4
38
+ [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
39
+
40
+ [-1, 1, Conv, [128, 3, 2]],
41
+ [[-1, 7], 1, Concat, [1]], # cat head P5
42
+ [-1, 1, C3, [128, False]], # 20 (P5/32-large)
43
+
44
+ [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45
+ ]
facelib/detection/yolov5face/utils/__init__.py ADDED
File without changes
facelib/detection/yolov5face/utils/autoanchor.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto-anchor utils
2
+
3
+
4
+ def check_anchor_order(m):
5
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
6
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
7
+ da = a[-1] - a[0] # delta a
8
+ ds = m.stride[-1] - m.stride[0] # delta s
9
+ if da.sign() != ds.sign(): # same order
10
+ print("Reversing anchor order")
11
+ m.anchors[:] = m.anchors.flip(0)
12
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
facelib/detection/yolov5face/utils/datasets.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True):
6
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
7
+ shape = img.shape[:2] # current shape [height, width]
8
+ if isinstance(new_shape, int):
9
+ new_shape = (new_shape, new_shape)
10
+
11
+ # Scale ratio (new / old)
12
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
13
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
14
+ r = min(r, 1.0)
15
+
16
+ # Compute padding
17
+ ratio = r, r # width, height ratios
18
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
19
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
20
+ if auto: # minimum rectangle
21
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
22
+ elif scale_fill: # stretch
23
+ dw, dh = 0.0, 0.0
24
+ new_unpad = (new_shape[1], new_shape[0])
25
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
26
+
27
+ dw /= 2 # divide padding into 2 sides
28
+ dh /= 2
29
+
30
+ if shape[::-1] != new_unpad: # resize
31
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
32
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
33
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
34
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
35
+ return img, ratio, (dw, dh)
facelib/detection/yolov5face/utils/extract_ckpt.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ sys.path.insert(0,'./facelib/detection/yolov5face')
4
+ model = torch.load('facelib/detection/yolov5face/yolov5n-face.pt', map_location='cpu')['model']
5
+ torch.save(model.state_dict(),'weights/facelib/yolov5n-face.pth')
facelib/detection/yolov5face/utils/general.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import time
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torchvision
7
+
8
+
9
+ def check_img_size(img_size, s=32):
10
+ # Verify img_size is a multiple of stride s
11
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
12
+ # if new_size != img_size:
13
+ # print(f"WARNING: --img-size {img_size:g} must be multiple of max stride {s:g}, updating to {new_size:g}")
14
+ return new_size
15
+
16
+
17
+ def make_divisible(x, divisor):
18
+ # Returns x evenly divisible by divisor
19
+ return math.ceil(x / divisor) * divisor
20
+
21
+
22
+ def xyxy2xywh(x):
23
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
24
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
25
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
26
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
27
+ y[:, 2] = x[:, 2] - x[:, 0] # width
28
+ y[:, 3] = x[:, 3] - x[:, 1] # height
29
+ return y
30
+
31
+
32
+ def xywh2xyxy(x):
33
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
34
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
35
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
36
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
37
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
38
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
39
+ return y
40
+
41
+
42
+ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
43
+ # Rescale coords (xyxy) from img1_shape to img0_shape
44
+ if ratio_pad is None: # calculate from img0_shape
45
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
46
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
47
+ else:
48
+ gain = ratio_pad[0][0]
49
+ pad = ratio_pad[1]
50
+
51
+ coords[:, [0, 2]] -= pad[0] # x padding
52
+ coords[:, [1, 3]] -= pad[1] # y padding
53
+ coords[:, :4] /= gain
54
+ clip_coords(coords, img0_shape)
55
+ return coords
56
+
57
+
58
+ def clip_coords(boxes, img_shape):
59
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
60
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
61
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
62
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
63
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
64
+
65
+
66
+ def box_iou(box1, box2):
67
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
68
+ """
69
+ Return intersection-over-union (Jaccard index) of boxes.
70
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
71
+ Arguments:
72
+ box1 (Tensor[N, 4])
73
+ box2 (Tensor[M, 4])
74
+ Returns:
75
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
76
+ IoU values for every element in boxes1 and boxes2
77
+ """
78
+
79
+ def box_area(box):
80
+ return (box[2] - box[0]) * (box[3] - box[1])
81
+
82
+ area1 = box_area(box1.T)
83
+ area2 = box_area(box2.T)
84
+
85
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
86
+ return inter / (area1[:, None] + area2 - inter)
87
+
88
+
89
+ def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
90
+ """Performs Non-Maximum Suppression (NMS) on inference results
91
+ Returns:
92
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
93
+ """
94
+
95
+ nc = prediction.shape[2] - 15 # number of classes
96
+ xc = prediction[..., 4] > conf_thres # candidates
97
+
98
+ # Settings
99
+ # (pixels) maximum box width and height
100
+ max_wh = 4096
101
+ time_limit = 10.0 # seconds to quit after
102
+ redundant = True # require redundant detections
103
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
104
+ merge = False # use merge-NMS
105
+
106
+ t = time.time()
107
+ output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
108
+ for xi, x in enumerate(prediction): # image index, image inference
109
+ # Apply constraints
110
+ x = x[xc[xi]] # confidence
111
+
112
+ # Cat apriori labels if autolabelling
113
+ if labels and len(labels[xi]):
114
+ label = labels[xi]
115
+ v = torch.zeros((len(label), nc + 15), device=x.device)
116
+ v[:, :4] = label[:, 1:5] # box
117
+ v[:, 4] = 1.0 # conf
118
+ v[range(len(label)), label[:, 0].long() + 15] = 1.0 # cls
119
+ x = torch.cat((x, v), 0)
120
+
121
+ # If none remain process next image
122
+ if not x.shape[0]:
123
+ continue
124
+
125
+ # Compute conf
126
+ x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
127
+
128
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
129
+ box = xywh2xyxy(x[:, :4])
130
+
131
+ # Detections matrix nx6 (xyxy, conf, landmarks, cls)
132
+ if multi_label:
133
+ i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
134
+ x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15], j[:, None].float()), 1)
135
+ else: # best class only
136
+ conf, j = x[:, 15:].max(1, keepdim=True)
137
+ x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
138
+
139
+ # Filter by class
140
+ if classes is not None:
141
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
142
+
143
+ # If none remain process next image
144
+ n = x.shape[0] # number of boxes
145
+ if not n:
146
+ continue
147
+
148
+ # Batched NMS
149
+ c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
150
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
151
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
152
+
153
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
154
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
155
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
156
+ weights = iou * scores[None] # box weights
157
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
158
+ if redundant:
159
+ i = i[iou.sum(1) > 1] # require redundancy
160
+
161
+ output[xi] = x[i]
162
+ if (time.time() - t) > time_limit:
163
+ break # time limit exceeded
164
+
165
+ return output
166
+
167
+
168
+ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
169
+ """Performs Non-Maximum Suppression (NMS) on inference results
170
+
171
+ Returns:
172
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
173
+ """
174
+
175
+ nc = prediction.shape[2] - 5 # number of classes
176
+ xc = prediction[..., 4] > conf_thres # candidates
177
+
178
+ # Settings
179
+ # (pixels) maximum box width and height
180
+ max_wh = 4096
181
+ time_limit = 10.0 # seconds to quit after
182
+ redundant = True # require redundant detections
183
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
184
+ merge = False # use merge-NMS
185
+
186
+ t = time.time()
187
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
188
+ for xi, x in enumerate(prediction): # image index, image inference
189
+ x = x[xc[xi]] # confidence
190
+
191
+ # Cat apriori labels if autolabelling
192
+ if labels and len(labels[xi]):
193
+ label_id = labels[xi]
194
+ v = torch.zeros((len(label_id), nc + 5), device=x.device)
195
+ v[:, :4] = label_id[:, 1:5] # box
196
+ v[:, 4] = 1.0 # conf
197
+ v[range(len(label_id)), label_id[:, 0].long() + 5] = 1.0 # cls
198
+ x = torch.cat((x, v), 0)
199
+
200
+ # If none remain process next image
201
+ if not x.shape[0]:
202
+ continue
203
+
204
+ # Compute conf
205
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
206
+
207
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
208
+ box = xywh2xyxy(x[:, :4])
209
+
210
+ # Detections matrix nx6 (xyxy, conf, cls)
211
+ if multi_label:
212
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
213
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
214
+ else: # best class only
215
+ conf, j = x[:, 5:].max(1, keepdim=True)
216
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
217
+
218
+ # Filter by class
219
+ if classes is not None:
220
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
221
+
222
+ # Check shape
223
+ n = x.shape[0] # number of boxes
224
+ if not n: # no boxes
225
+ continue
226
+
227
+ x = x[x[:, 4].argsort(descending=True)] # sort by confidence
228
+
229
+ # Batched NMS
230
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
231
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
232
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
233
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
234
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
235
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
236
+ weights = iou * scores[None] # box weights
237
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
238
+ if redundant:
239
+ i = i[iou.sum(1) > 1] # require redundancy
240
+
241
+ output[xi] = x[i]
242
+ if (time.time() - t) > time_limit:
243
+ print(f"WARNING: NMS time limit {time_limit}s exceeded")
244
+ break # time limit exceeded
245
+
246
+ return output
247
+
248
+
249
+ def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
250
+ # Rescale coords (xyxy) from img1_shape to img0_shape
251
+ if ratio_pad is None: # calculate from img0_shape
252
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
253
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
254
+ else:
255
+ gain = ratio_pad[0][0]
256
+ pad = ratio_pad[1]
257
+
258
+ coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
259
+ coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
260
+ coords[:, :10] /= gain
261
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
262
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
263
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
264
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
265
+ coords[:, 4].clamp_(0, img0_shape[1]) # x3
266
+ coords[:, 5].clamp_(0, img0_shape[0]) # y3
267
+ coords[:, 6].clamp_(0, img0_shape[1]) # x4
268
+ coords[:, 7].clamp_(0, img0_shape[0]) # y4
269
+ coords[:, 8].clamp_(0, img0_shape[1]) # x5
270
+ coords[:, 9].clamp_(0, img0_shape[0]) # y5
271
+ return coords
facelib/detection/yolov5face/utils/torch_utils.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ def fuse_conv_and_bn(conv, bn):
6
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
7
+ fusedconv = (
8
+ nn.Conv2d(
9
+ conv.in_channels,
10
+ conv.out_channels,
11
+ kernel_size=conv.kernel_size,
12
+ stride=conv.stride,
13
+ padding=conv.padding,
14
+ groups=conv.groups,
15
+ bias=True,
16
+ )
17
+ .requires_grad_(False)
18
+ .to(conv.weight.device)
19
+ )
20
+
21
+ # prepare filters
22
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
23
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
24
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
25
+
26
+ # prepare spatial bias
27
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
28
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
29
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
30
+
31
+ return fusedconv
32
+
33
+
34
+ def copy_attr(a, b, include=(), exclude=()):
35
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
36
+ for k, v in b.__dict__.items():
37
+ if (include and k not in include) or k.startswith("_") or k in exclude:
38
+ continue
39
+
40
+ setattr(a, k, v)
facelib/parsing/__init__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from huggingface_hub import hf_hub_download
3
+
4
+ from .bisenet import BiSeNet
5
+ from .parsenet import ParseNet
6
+
7
+ REPO_ID = "leonelhs/facexlib"
8
+
9
+ def init_parsing_model(model_name='bisenet', half=False, device='cuda'):
10
+ if model_name == 'bisenet':
11
+ model = BiSeNet(num_class=19)
12
+ model_path = hf_hub_download(repo_id=REPO_ID, filename='parsing_bisenet.pth')
13
+ elif model_name == 'parsenet':
14
+ model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
15
+ model_path = hf_hub_download(repo_id=REPO_ID, filename='parsing_parsenet.pth')
16
+ else:
17
+ raise NotImplementedError(f'{model_name} is not implemented.')
18
+
19
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
20
+ model.load_state_dict(load_net, strict=True)
21
+ model.eval()
22
+ model = model.to(device)
23
+ return model
facelib/parsing/bisenet.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .resnet import ResNet18
6
+
7
+
8
+ class ConvBNReLU(nn.Module):
9
+
10
+ def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
11
+ super(ConvBNReLU, self).__init__()
12
+ self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
13
+ self.bn = nn.BatchNorm2d(out_chan)
14
+
15
+ def forward(self, x):
16
+ x = self.conv(x)
17
+ x = F.relu(self.bn(x))
18
+ return x
19
+
20
+
21
+ class BiSeNetOutput(nn.Module):
22
+
23
+ def __init__(self, in_chan, mid_chan, num_class):
24
+ super(BiSeNetOutput, self).__init__()
25
+ self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
26
+ self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
27
+
28
+ def forward(self, x):
29
+ feat = self.conv(x)
30
+ out = self.conv_out(feat)
31
+ return out, feat
32
+
33
+
34
+ class AttentionRefinementModule(nn.Module):
35
+
36
+ def __init__(self, in_chan, out_chan):
37
+ super(AttentionRefinementModule, self).__init__()
38
+ self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
39
+ self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
40
+ self.bn_atten = nn.BatchNorm2d(out_chan)
41
+ self.sigmoid_atten = nn.Sigmoid()
42
+
43
+ def forward(self, x):
44
+ feat = self.conv(x)
45
+ atten = F.avg_pool2d(feat, feat.size()[2:])
46
+ atten = self.conv_atten(atten)
47
+ atten = self.bn_atten(atten)
48
+ atten = self.sigmoid_atten(atten)
49
+ out = torch.mul(feat, atten)
50
+ return out
51
+
52
+
53
+ class ContextPath(nn.Module):
54
+
55
+ def __init__(self):
56
+ super(ContextPath, self).__init__()
57
+ self.resnet = ResNet18()
58
+ self.arm16 = AttentionRefinementModule(256, 128)
59
+ self.arm32 = AttentionRefinementModule(512, 128)
60
+ self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
61
+ self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
62
+ self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
63
+
64
+ def forward(self, x):
65
+ feat8, feat16, feat32 = self.resnet(x)
66
+ h8, w8 = feat8.size()[2:]
67
+ h16, w16 = feat16.size()[2:]
68
+ h32, w32 = feat32.size()[2:]
69
+
70
+ avg = F.avg_pool2d(feat32, feat32.size()[2:])
71
+ avg = self.conv_avg(avg)
72
+ avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
73
+
74
+ feat32_arm = self.arm32(feat32)
75
+ feat32_sum = feat32_arm + avg_up
76
+ feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
77
+ feat32_up = self.conv_head32(feat32_up)
78
+
79
+ feat16_arm = self.arm16(feat16)
80
+ feat16_sum = feat16_arm + feat32_up
81
+ feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
82
+ feat16_up = self.conv_head16(feat16_up)
83
+
84
+ return feat8, feat16_up, feat32_up # x8, x8, x16
85
+
86
+
87
+ class FeatureFusionModule(nn.Module):
88
+
89
+ def __init__(self, in_chan, out_chan):
90
+ super(FeatureFusionModule, self).__init__()
91
+ self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
92
+ self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
93
+ self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
94
+ self.relu = nn.ReLU(inplace=True)
95
+ self.sigmoid = nn.Sigmoid()
96
+
97
+ def forward(self, fsp, fcp):
98
+ fcat = torch.cat([fsp, fcp], dim=1)
99
+ feat = self.convblk(fcat)
100
+ atten = F.avg_pool2d(feat, feat.size()[2:])
101
+ atten = self.conv1(atten)
102
+ atten = self.relu(atten)
103
+ atten = self.conv2(atten)
104
+ atten = self.sigmoid(atten)
105
+ feat_atten = torch.mul(feat, atten)
106
+ feat_out = feat_atten + feat
107
+ return feat_out
108
+
109
+
110
+ class BiSeNet(nn.Module):
111
+
112
+ def __init__(self, num_class):
113
+ super(BiSeNet, self).__init__()
114
+ self.cp = ContextPath()
115
+ self.ffm = FeatureFusionModule(256, 256)
116
+ self.conv_out = BiSeNetOutput(256, 256, num_class)
117
+ self.conv_out16 = BiSeNetOutput(128, 64, num_class)
118
+ self.conv_out32 = BiSeNetOutput(128, 64, num_class)
119
+
120
+ def forward(self, x, return_feat=False):
121
+ h, w = x.size()[2:]
122
+ feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
123
+ feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
124
+ feat_fuse = self.ffm(feat_sp, feat_cp8)
125
+
126
+ out, feat = self.conv_out(feat_fuse)
127
+ out16, feat16 = self.conv_out16(feat_cp8)
128
+ out32, feat32 = self.conv_out32(feat_cp16)
129
+
130
+ out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
131
+ out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
132
+ out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
133
+
134
+ if return_feat:
135
+ feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
136
+ feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
137
+ feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
138
+ return out, out16, out32, feat, feat16, feat32
139
+ else:
140
+ return out, out16, out32
facelib/parsing/parsenet.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/chaofengc/PSFRGAN
2
+ """
3
+ import numpy as np
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class NormLayer(nn.Module):
9
+ """Normalization Layers.
10
+
11
+ Args:
12
+ channels: input channels, for batch norm and instance norm.
13
+ input_size: input shape without batch size, for layer norm.
14
+ """
15
+
16
+ def __init__(self, channels, normalize_shape=None, norm_type='bn'):
17
+ super(NormLayer, self).__init__()
18
+ norm_type = norm_type.lower()
19
+ self.norm_type = norm_type
20
+ if norm_type == 'bn':
21
+ self.norm = nn.BatchNorm2d(channels, affine=True)
22
+ elif norm_type == 'in':
23
+ self.norm = nn.InstanceNorm2d(channels, affine=False)
24
+ elif norm_type == 'gn':
25
+ self.norm = nn.GroupNorm(32, channels, affine=True)
26
+ elif norm_type == 'pixel':
27
+ self.norm = lambda x: F.normalize(x, p=2, dim=1)
28
+ elif norm_type == 'layer':
29
+ self.norm = nn.LayerNorm(normalize_shape)
30
+ elif norm_type == 'none':
31
+ self.norm = lambda x: x * 1.0
32
+ else:
33
+ assert 1 == 0, f'Norm type {norm_type} not support.'
34
+
35
+ def forward(self, x, ref=None):
36
+ if self.norm_type == 'spade':
37
+ return self.norm(x, ref)
38
+ else:
39
+ return self.norm(x)
40
+
41
+
42
+ class ReluLayer(nn.Module):
43
+ """Relu Layer.
44
+
45
+ Args:
46
+ relu type: type of relu layer, candidates are
47
+ - ReLU
48
+ - LeakyReLU: default relu slope 0.2
49
+ - PRelu
50
+ - SELU
51
+ - none: direct pass
52
+ """
53
+
54
+ def __init__(self, channels, relu_type='relu'):
55
+ super(ReluLayer, self).__init__()
56
+ relu_type = relu_type.lower()
57
+ if relu_type == 'relu':
58
+ self.func = nn.ReLU(True)
59
+ elif relu_type == 'leakyrelu':
60
+ self.func = nn.LeakyReLU(0.2, inplace=True)
61
+ elif relu_type == 'prelu':
62
+ self.func = nn.PReLU(channels)
63
+ elif relu_type == 'selu':
64
+ self.func = nn.SELU(True)
65
+ elif relu_type == 'none':
66
+ self.func = lambda x: x * 1.0
67
+ else:
68
+ assert 1 == 0, f'Relu type {relu_type} not support.'
69
+
70
+ def forward(self, x):
71
+ return self.func(x)
72
+
73
+
74
+ class ConvLayer(nn.Module):
75
+
76
+ def __init__(self,
77
+ in_channels,
78
+ out_channels,
79
+ kernel_size=3,
80
+ scale='none',
81
+ norm_type='none',
82
+ relu_type='none',
83
+ use_pad=True,
84
+ bias=True):
85
+ super(ConvLayer, self).__init__()
86
+ self.use_pad = use_pad
87
+ self.norm_type = norm_type
88
+ if norm_type in ['bn']:
89
+ bias = False
90
+
91
+ stride = 2 if scale == 'down' else 1
92
+
93
+ self.scale_func = lambda x: x
94
+ if scale == 'up':
95
+ self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
96
+
97
+ self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
98
+ self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
99
+
100
+ self.relu = ReluLayer(out_channels, relu_type)
101
+ self.norm = NormLayer(out_channels, norm_type=norm_type)
102
+
103
+ def forward(self, x):
104
+ out = self.scale_func(x)
105
+ if self.use_pad:
106
+ out = self.reflection_pad(out)
107
+ out = self.conv2d(out)
108
+ out = self.norm(out)
109
+ out = self.relu(out)
110
+ return out
111
+
112
+
113
+ class ResidualBlock(nn.Module):
114
+ """
115
+ Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
116
+ """
117
+
118
+ def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
119
+ super(ResidualBlock, self).__init__()
120
+
121
+ if scale == 'none' and c_in == c_out:
122
+ self.shortcut_func = lambda x: x
123
+ else:
124
+ self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
125
+
126
+ scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
127
+ scale_conf = scale_config_dict[scale]
128
+
129
+ self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
130
+ self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
131
+
132
+ def forward(self, x):
133
+ identity = self.shortcut_func(x)
134
+
135
+ res = self.conv1(x)
136
+ res = self.conv2(res)
137
+ return identity + res
138
+
139
+
140
+ class ParseNet(nn.Module):
141
+
142
+ def __init__(self,
143
+ in_size=128,
144
+ out_size=128,
145
+ min_feat_size=32,
146
+ base_ch=64,
147
+ parsing_ch=19,
148
+ res_depth=10,
149
+ relu_type='LeakyReLU',
150
+ norm_type='bn',
151
+ ch_range=[32, 256]):
152
+ super().__init__()
153
+ self.res_depth = res_depth
154
+ act_args = {'norm_type': norm_type, 'relu_type': relu_type}
155
+ min_ch, max_ch = ch_range
156
+
157
+ ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
158
+ min_feat_size = min(in_size, min_feat_size)
159
+
160
+ down_steps = int(np.log2(in_size // min_feat_size))
161
+ up_steps = int(np.log2(out_size // min_feat_size))
162
+
163
+ # =============== define encoder-body-decoder ====================
164
+ self.encoder = []
165
+ self.encoder.append(ConvLayer(3, base_ch, 3, 1))
166
+ head_ch = base_ch
167
+ for i in range(down_steps):
168
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
169
+ self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
170
+ head_ch = head_ch * 2
171
+
172
+ self.body = []
173
+ for i in range(res_depth):
174
+ self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
175
+
176
+ self.decoder = []
177
+ for i in range(up_steps):
178
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
179
+ self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
180
+ head_ch = head_ch // 2
181
+
182
+ self.encoder = nn.Sequential(*self.encoder)
183
+ self.body = nn.Sequential(*self.body)
184
+ self.decoder = nn.Sequential(*self.decoder)
185
+ self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
186
+ self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
187
+
188
+ def forward(self, x):
189
+ feat = self.encoder(x)
190
+ x = feat + self.body(feat)
191
+ x = self.decoder(x)
192
+ out_img = self.out_img_conv(x)
193
+ out_mask = self.out_mask_conv(x)
194
+ return out_mask, out_img
facelib/parsing/resnet.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def conv3x3(in_planes, out_planes, stride=1):
6
+ """3x3 convolution with padding"""
7
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
8
+
9
+
10
+ class BasicBlock(nn.Module):
11
+
12
+ def __init__(self, in_chan, out_chan, stride=1):
13
+ super(BasicBlock, self).__init__()
14
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
15
+ self.bn1 = nn.BatchNorm2d(out_chan)
16
+ self.conv2 = conv3x3(out_chan, out_chan)
17
+ self.bn2 = nn.BatchNorm2d(out_chan)
18
+ self.relu = nn.ReLU(inplace=True)
19
+ self.downsample = None
20
+ if in_chan != out_chan or stride != 1:
21
+ self.downsample = nn.Sequential(
22
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
23
+ nn.BatchNorm2d(out_chan),
24
+ )
25
+
26
+ def forward(self, x):
27
+ residual = self.conv1(x)
28
+ residual = F.relu(self.bn1(residual))
29
+ residual = self.conv2(residual)
30
+ residual = self.bn2(residual)
31
+
32
+ shortcut = x
33
+ if self.downsample is not None:
34
+ shortcut = self.downsample(x)
35
+
36
+ out = shortcut + residual
37
+ out = self.relu(out)
38
+ return out
39
+
40
+
41
+ def create_layer_basic(in_chan, out_chan, bnum, stride=1):
42
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
43
+ for i in range(bnum - 1):
44
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
45
+ return nn.Sequential(*layers)
46
+
47
+
48
+ class ResNet18(nn.Module):
49
+
50
+ def __init__(self):
51
+ super(ResNet18, self).__init__()
52
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
53
+ self.bn1 = nn.BatchNorm2d(64)
54
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
55
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
56
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
57
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
58
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
59
+
60
+ def forward(self, x):
61
+ x = self.conv1(x)
62
+ x = F.relu(self.bn1(x))
63
+ x = self.maxpool(x)
64
+
65
+ x = self.layer1(x)
66
+ feat8 = self.layer2(x) # 1/8
67
+ feat16 = self.layer3(feat8) # 1/16
68
+ feat32 = self.layer4(feat16) # 1/32
69
+ return feat8, feat16, feat32
facelib/utils/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
2
+ from .misc import img2tensor, load_file_from_url, download_pretrained_models, scandir
3
+
4
+ __all__ = [
5
+ 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url',
6
+ 'download_pretrained_models', 'paste_face_back', 'img2tensor', 'scandir'
7
+ ]
facelib/utils/face_restoration_helper.py ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import torch
5
+ from torchvision.transforms.functional import normalize
6
+
7
+ from facelib.detection import init_detection_model
8
+ from facelib.parsing import init_parsing_model
9
+ from facelib.utils.misc import img2tensor, imwrite, is_gray, bgr2gray, adain_npy
10
+
11
+ # dlib_model_url = {
12
+ # 'face_detector': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/mmod_human_face_detector-4cb19393.dat',
13
+ # 'shape_predictor_5': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_5_face_landmarks-c4b1e980.dat'
14
+ # }
15
+
16
+ def get_largest_face(det_faces, h, w):
17
+
18
+ def get_location(val, length):
19
+ if val < 0:
20
+ return 0
21
+ elif val > length:
22
+ return length
23
+ else:
24
+ return val
25
+
26
+ face_areas = []
27
+ for det_face in det_faces:
28
+ left = get_location(det_face[0], w)
29
+ right = get_location(det_face[2], w)
30
+ top = get_location(det_face[1], h)
31
+ bottom = get_location(det_face[3], h)
32
+ face_area = (right - left) * (bottom - top)
33
+ face_areas.append(face_area)
34
+ largest_idx = face_areas.index(max(face_areas))
35
+ return det_faces[largest_idx], largest_idx
36
+
37
+
38
+ def get_center_face(det_faces, h=0, w=0, center=None):
39
+ if center is not None:
40
+ center = np.array(center)
41
+ else:
42
+ center = np.array([w / 2, h / 2])
43
+ center_dist = []
44
+ for det_face in det_faces:
45
+ face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
46
+ dist = np.linalg.norm(face_center - center)
47
+ center_dist.append(dist)
48
+ center_idx = center_dist.index(min(center_dist))
49
+ return det_faces[center_idx], center_idx
50
+
51
+
52
+ class FaceRestoreHelper(object):
53
+ """Helper for the face restoration pipeline (base class)."""
54
+
55
+ def __init__(self,
56
+ upscale_factor,
57
+ face_size=512,
58
+ crop_ratio=(1, 1),
59
+ det_model='retinaface_resnet50',
60
+ save_ext='png',
61
+ template_3points=False,
62
+ pad_blur=False,
63
+ use_parse=False,
64
+ device=None):
65
+ self.template_3points = template_3points # improve robustness
66
+ self.upscale_factor = int(upscale_factor)
67
+ # the cropped face ratio based on the square face
68
+ self.crop_ratio = crop_ratio # (h, w)
69
+ assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
70
+ self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
71
+ self.det_model = det_model
72
+
73
+ if self.det_model == 'dlib':
74
+ # standard 5 landmarks for FFHQ faces with 1024 x 1024
75
+ self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941],
76
+ [337.91089109, 488.38613861], [437.95049505, 493.51485149],
77
+ [513.58415842, 678.5049505]])
78
+ self.face_template = self.face_template / (1024 // face_size)
79
+ elif self.template_3points:
80
+ self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
81
+ else:
82
+ # standard 5 landmarks for FFHQ faces with 512 x 512
83
+ # facexlib
84
+ self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
85
+ [201.26117, 371.41043], [313.08905, 371.15118]])
86
+
87
+ # dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
88
+ # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
89
+ # [198.22603, 372.82502], [313.91018, 372.75659]])
90
+
91
+ self.face_template = self.face_template * (face_size / 512.0)
92
+ if self.crop_ratio[0] > 1:
93
+ self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
94
+ if self.crop_ratio[1] > 1:
95
+ self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
96
+ self.save_ext = save_ext
97
+ self.pad_blur = pad_blur
98
+ if self.pad_blur is True:
99
+ self.template_3points = False
100
+
101
+ self.all_landmarks_5 = []
102
+ self.det_faces = []
103
+ self.affine_matrices = []
104
+ self.inverse_affine_matrices = []
105
+ self.cropped_faces = []
106
+ self.restored_faces = []
107
+ self.pad_input_imgs = []
108
+
109
+ if device is None:
110
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
111
+ else:
112
+ self.device = device
113
+
114
+ # init face detection model
115
+ if self.det_model == 'dlib':
116
+ self.face_detector, self.shape_predictor_5 = self.init_dlib(dlib_model_url['face_detector'], dlib_model_url['shape_predictor_5'])
117
+ else:
118
+ self.face_detector = init_detection_model(det_model, half=False, device=self.device)
119
+
120
+ # init face parsing model
121
+ self.use_parse = use_parse
122
+ self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
123
+
124
+ def set_upscale_factor(self, upscale_factor):
125
+ self.upscale_factor = upscale_factor
126
+
127
+ def read_image(self, img):
128
+ """img can be image path or cv2 loaded image."""
129
+ # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
130
+ if isinstance(img, str):
131
+ img = cv2.imread(img)
132
+
133
+ if np.max(img) > 256: # 16-bit image
134
+ img = img / 65535 * 255
135
+ if len(img.shape) == 2: # gray image
136
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
137
+ elif img.shape[2] == 4: # BGRA image with alpha channel
138
+ img = img[:, :, 0:3]
139
+
140
+ self.input_img = img
141
+ self.is_gray = is_gray(img, threshold=10)
142
+ if self.is_gray:
143
+ print('Grayscale input: True')
144
+
145
+ if min(self.input_img.shape[:2])<512:
146
+ f = 512.0/min(self.input_img.shape[:2])
147
+ self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
148
+
149
+ def init_dlib(self, detection_path, landmark5_path):
150
+ """Initialize the dlib detectors and predictors."""
151
+ try:
152
+ import dlib
153
+ except ImportError:
154
+ print('Please install dlib by running:' 'conda install -c conda-forge dlib')
155
+ detection_path = load_file_from_url(url=detection_path, model_dir='weights/dlib', progress=True, file_name=None)
156
+ landmark5_path = load_file_from_url(url=landmark5_path, model_dir='weights/dlib', progress=True, file_name=None)
157
+ face_detector = dlib.cnn_face_detection_model_v1(detection_path)
158
+ print(detection_path)
159
+ shape_predictor_5 = dlib.shape_predictor(landmark5_path)
160
+ print(landmark5_path)
161
+ return face_detector, shape_predictor_5
162
+
163
+ def get_face_landmarks_5_dlib(self,
164
+ only_keep_largest=False,
165
+ scale=1):
166
+ det_faces = self.face_detector(self.input_img, scale)
167
+
168
+ if len(det_faces) == 0:
169
+ print('No face detected. Try to increase upsample_num_times.')
170
+ return 0
171
+ else:
172
+ if only_keep_largest:
173
+ print('Detect several faces and only keep the largest.')
174
+ face_areas = []
175
+ for i in range(len(det_faces)):
176
+ face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * (
177
+ det_faces[i].rect.bottom() - det_faces[i].rect.top())
178
+ face_areas.append(face_area)
179
+ largest_idx = face_areas.index(max(face_areas))
180
+ self.det_faces = [det_faces[largest_idx]]
181
+ else:
182
+ self.det_faces = det_faces
183
+
184
+ if len(self.det_faces) == 0:
185
+ return 0
186
+
187
+ for face in self.det_faces:
188
+ shape = self.shape_predictor_5(self.input_img, face.rect)
189
+ landmark = np.array([[part.x, part.y] for part in shape.parts()])
190
+ self.all_landmarks_5.append(landmark)
191
+
192
+ return len(self.all_landmarks_5)
193
+
194
+
195
+ def get_face_landmarks_5(self,
196
+ only_keep_largest=False,
197
+ only_center_face=False,
198
+ resize=None,
199
+ blur_ratio=0.01,
200
+ eye_dist_threshold=None):
201
+ if self.det_model == 'dlib':
202
+ return self.get_face_landmarks_5_dlib(only_keep_largest)
203
+
204
+ if resize is None:
205
+ scale = 1
206
+ input_img = self.input_img
207
+ else:
208
+ h, w = self.input_img.shape[0:2]
209
+ scale = resize / min(h, w)
210
+ # scale = max(1, scale) # always scale up; comment this out for HD images, e.g., AIGC faces.
211
+ h, w = int(h * scale), int(w * scale)
212
+ interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
213
+ input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
214
+
215
+ with torch.no_grad():
216
+ bboxes = self.face_detector.detect_faces(input_img)
217
+
218
+ if bboxes is None or bboxes.shape[0] == 0:
219
+ return 0
220
+ else:
221
+ bboxes = bboxes / scale
222
+
223
+ for bbox in bboxes:
224
+ # remove faces with too small eye distance: side faces or too small faces
225
+ eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
226
+ if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
227
+ continue
228
+
229
+ if self.template_3points:
230
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
231
+ else:
232
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
233
+ self.all_landmarks_5.append(landmark)
234
+ self.det_faces.append(bbox[0:5])
235
+
236
+ if len(self.det_faces) == 0:
237
+ return 0
238
+ if only_keep_largest:
239
+ h, w, _ = self.input_img.shape
240
+ self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
241
+ self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
242
+ elif only_center_face:
243
+ h, w, _ = self.input_img.shape
244
+ self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
245
+ self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
246
+
247
+ # pad blurry images
248
+ if self.pad_blur:
249
+ self.pad_input_imgs = []
250
+ for landmarks in self.all_landmarks_5:
251
+ # get landmarks
252
+ eye_left = landmarks[0, :]
253
+ eye_right = landmarks[1, :]
254
+ eye_avg = (eye_left + eye_right) * 0.5
255
+ mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
256
+ eye_to_eye = eye_right - eye_left
257
+ eye_to_mouth = mouth_avg - eye_avg
258
+
259
+ # Get the oriented crop rectangle
260
+ # x: half width of the oriented crop rectangle
261
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
262
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
263
+ # norm with the hypotenuse: get the direction
264
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
265
+ rect_scale = 1.5
266
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
267
+ # y: half height of the oriented crop rectangle
268
+ y = np.flipud(x) * [-1, 1]
269
+
270
+ # c: center
271
+ c = eye_avg + eye_to_mouth * 0.1
272
+ # quad: (left_top, left_bottom, right_bottom, right_top)
273
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
274
+ # qsize: side length of the square
275
+ qsize = np.hypot(*x) * 2
276
+ border = max(int(np.rint(qsize * 0.1)), 3)
277
+
278
+ # get pad
279
+ # pad: (width_left, height_top, width_right, height_bottom)
280
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
281
+ int(np.ceil(max(quad[:, 1]))))
282
+ pad = [
283
+ max(-pad[0] + border, 1),
284
+ max(-pad[1] + border, 1),
285
+ max(pad[2] - self.input_img.shape[0] + border, 1),
286
+ max(pad[3] - self.input_img.shape[1] + border, 1)
287
+ ]
288
+
289
+ if max(pad) > 1:
290
+ # pad image
291
+ pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
292
+ # modify landmark coords
293
+ landmarks[:, 0] += pad[0]
294
+ landmarks[:, 1] += pad[1]
295
+ # blur pad images
296
+ h, w, _ = pad_img.shape
297
+ y, x, _ = np.ogrid[:h, :w, :1]
298
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
299
+ np.float32(w - 1 - x) / pad[2]),
300
+ 1.0 - np.minimum(np.float32(y) / pad[1],
301
+ np.float32(h - 1 - y) / pad[3]))
302
+ blur = int(qsize * blur_ratio)
303
+ if blur % 2 == 0:
304
+ blur += 1
305
+ blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
306
+ # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
307
+
308
+ pad_img = pad_img.astype('float32')
309
+ pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
310
+ pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
311
+ pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
312
+ self.pad_input_imgs.append(pad_img)
313
+ else:
314
+ self.pad_input_imgs.append(np.copy(self.input_img))
315
+
316
+ return len(self.all_landmarks_5)
317
+
318
+ def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
319
+ """Align and warp faces with face template.
320
+ """
321
+ if self.pad_blur:
322
+ assert len(self.pad_input_imgs) == len(
323
+ self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
324
+ for idx, landmark in enumerate(self.all_landmarks_5):
325
+ # use 5 landmarks to get affine matrix
326
+ # use cv2.LMEDS method for the equivalence to skimage transform
327
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
328
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
329
+ self.affine_matrices.append(affine_matrix)
330
+ # warp and crop faces
331
+ if border_mode == 'constant':
332
+ border_mode = cv2.BORDER_CONSTANT
333
+ elif border_mode == 'reflect101':
334
+ border_mode = cv2.BORDER_REFLECT101
335
+ elif border_mode == 'reflect':
336
+ border_mode = cv2.BORDER_REFLECT
337
+ if self.pad_blur:
338
+ input_img = self.pad_input_imgs[idx]
339
+ else:
340
+ input_img = self.input_img
341
+ cropped_face = cv2.warpAffine(
342
+ input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
343
+ self.cropped_faces.append(cropped_face)
344
+ # save the cropped face
345
+ if save_cropped_path is not None:
346
+ path = os.path.splitext(save_cropped_path)[0]
347
+ save_path = f'{path}_{idx:02d}.{self.save_ext}'
348
+ imwrite(cropped_face, save_path)
349
+
350
+ def get_inverse_affine(self, save_inverse_affine_path=None):
351
+ """Get inverse affine matrix."""
352
+ for idx, affine_matrix in enumerate(self.affine_matrices):
353
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
354
+ inverse_affine *= self.upscale_factor
355
+ self.inverse_affine_matrices.append(inverse_affine)
356
+ # save inverse affine matrices
357
+ if save_inverse_affine_path is not None:
358
+ path, _ = os.path.splitext(save_inverse_affine_path)
359
+ save_path = f'{path}_{idx:02d}.pth'
360
+ torch.save(inverse_affine, save_path)
361
+
362
+
363
+ def add_restored_face(self, restored_face, input_face=None):
364
+ if self.is_gray:
365
+ restored_face = bgr2gray(restored_face) # convert img into grayscale
366
+ if input_face is not None:
367
+ restored_face = adain_npy(restored_face, input_face) # transfer the color
368
+ self.restored_faces.append(restored_face)
369
+
370
+
371
+ def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
372
+ h, w, _ = self.input_img.shape
373
+ h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
374
+
375
+ if upsample_img is None:
376
+ # simply resize the background
377
+ # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
378
+ upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
379
+ else:
380
+ upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
381
+
382
+ assert len(self.restored_faces) == len(
383
+ self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
384
+
385
+ inv_mask_borders = []
386
+ for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
387
+ if face_upsampler is not None:
388
+ restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
389
+ inverse_affine /= self.upscale_factor
390
+ inverse_affine[:, 2] *= self.upscale_factor
391
+ face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
392
+ else:
393
+ # Add an offset to inverse affine matrix, for more precise back alignment
394
+ if self.upscale_factor > 1:
395
+ extra_offset = 0.5 * self.upscale_factor
396
+ else:
397
+ extra_offset = 0
398
+ inverse_affine[:, 2] += extra_offset
399
+ face_size = self.face_size
400
+ inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
401
+
402
+ # if draw_box or not self.use_parse: # use square parse maps
403
+ # mask = np.ones(face_size, dtype=np.float32)
404
+ # inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
405
+ # # remove the black borders
406
+ # inv_mask_erosion = cv2.erode(
407
+ # inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
408
+ # pasted_face = inv_mask_erosion[:, :, None] * inv_restored
409
+ # total_face_area = np.sum(inv_mask_erosion) # // 3
410
+ # # add border
411
+ # if draw_box:
412
+ # h, w = face_size
413
+ # mask_border = np.ones((h, w, 3), dtype=np.float32)
414
+ # border = int(1400/np.sqrt(total_face_area))
415
+ # mask_border[border:h-border, border:w-border,:] = 0
416
+ # inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
417
+ # inv_mask_borders.append(inv_mask_border)
418
+ # if not self.use_parse:
419
+ # # compute the fusion edge based on the area of face
420
+ # w_edge = int(total_face_area**0.5) // 20
421
+ # erosion_radius = w_edge * 2
422
+ # inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
423
+ # blur_size = w_edge * 2
424
+ # inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
425
+ # if len(upsample_img.shape) == 2: # upsample_img is gray image
426
+ # upsample_img = upsample_img[:, :, None]
427
+ # inv_soft_mask = inv_soft_mask[:, :, None]
428
+
429
+ # always use square mask
430
+ mask = np.ones(face_size, dtype=np.float32)
431
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
432
+ # remove the black borders
433
+ inv_mask_erosion = cv2.erode(
434
+ inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
435
+ pasted_face = inv_mask_erosion[:, :, None] * inv_restored
436
+ total_face_area = np.sum(inv_mask_erosion) # // 3
437
+ # add border
438
+ if draw_box:
439
+ h, w = face_size
440
+ mask_border = np.ones((h, w, 3), dtype=np.float32)
441
+ border = int(1400/np.sqrt(total_face_area))
442
+ mask_border[border:h-border, border:w-border,:] = 0
443
+ inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
444
+ inv_mask_borders.append(inv_mask_border)
445
+ # compute the fusion edge based on the area of face
446
+ w_edge = int(total_face_area**0.5) // 20
447
+ erosion_radius = w_edge * 2
448
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
449
+ blur_size = w_edge * 2
450
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
451
+ if len(upsample_img.shape) == 2: # upsample_img is gray image
452
+ upsample_img = upsample_img[:, :, None]
453
+ inv_soft_mask = inv_soft_mask[:, :, None]
454
+
455
+ # parse mask
456
+ if self.use_parse:
457
+ # inference
458
+ face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
459
+ face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
460
+ normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
461
+ face_input = torch.unsqueeze(face_input, 0).to(self.device)
462
+ with torch.no_grad():
463
+ out = self.face_parse(face_input)[0]
464
+ out = out.argmax(dim=1).squeeze().cpu().numpy()
465
+
466
+ parse_mask = np.zeros(out.shape)
467
+ MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
468
+ for idx, color in enumerate(MASK_COLORMAP):
469
+ parse_mask[out == idx] = color
470
+ # blur the mask
471
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
472
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
473
+ # remove the black borders
474
+ thres = 10
475
+ parse_mask[:thres, :] = 0
476
+ parse_mask[-thres:, :] = 0
477
+ parse_mask[:, :thres] = 0
478
+ parse_mask[:, -thres:] = 0
479
+ parse_mask = parse_mask / 255.
480
+
481
+ parse_mask = cv2.resize(parse_mask, face_size)
482
+ parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
483
+ inv_soft_parse_mask = parse_mask[:, :, None]
484
+ # pasted_face = inv_restored
485
+ fuse_mask = (inv_soft_parse_mask<inv_soft_mask).astype('int')
486
+ inv_soft_mask = inv_soft_parse_mask*fuse_mask + inv_soft_mask*(1-fuse_mask)
487
+
488
+ if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
489
+ alpha = upsample_img[:, :, 3:]
490
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
491
+ upsample_img = np.concatenate((upsample_img, alpha), axis=2)
492
+ else:
493
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
494
+
495
+ if np.max(upsample_img) > 256: # 16-bit image
496
+ upsample_img = upsample_img.astype(np.uint16)
497
+ else:
498
+ upsample_img = upsample_img.astype(np.uint8)
499
+
500
+ # draw bounding box
501
+ if draw_box:
502
+ # upsample_input_img = cv2.resize(input_img, (w_up, h_up))
503
+ img_color = np.ones([*upsample_img.shape], dtype=np.float32)
504
+ img_color[:,:,0] = 0
505
+ img_color[:,:,1] = 255
506
+ img_color[:,:,2] = 0
507
+ for inv_mask_border in inv_mask_borders:
508
+ upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
509
+ # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
510
+
511
+ if save_path is not None:
512
+ path = os.path.splitext(save_path)[0]
513
+ save_path = f'{path}.{self.save_ext}'
514
+ imwrite(upsample_img, save_path)
515
+ return upsample_img
516
+
517
+ def clean_all(self):
518
+ self.all_landmarks_5 = []
519
+ self.restored_faces = []
520
+ self.affine_matrices = []
521
+ self.cropped_faces = []
522
+ self.inverse_affine_matrices = []
523
+ self.det_faces = []
524
+ self.pad_input_imgs = []
facelib/utils/face_utils.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+
5
+
6
+ def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
7
+ left, top, right, bot = bbox
8
+ width = right - left
9
+ height = bot - top
10
+
11
+ if preserve_aspect:
12
+ width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
13
+ height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
14
+ else:
15
+ width_increase = height_increase = increase_area
16
+ left = int(left - width_increase * width)
17
+ top = int(top - height_increase * height)
18
+ right = int(right + width_increase * width)
19
+ bot = int(bot + height_increase * height)
20
+ return (left, top, right, bot)
21
+
22
+
23
+ def get_valid_bboxes(bboxes, h, w):
24
+ left = max(bboxes[0], 0)
25
+ top = max(bboxes[1], 0)
26
+ right = min(bboxes[2], w)
27
+ bottom = min(bboxes[3], h)
28
+ return (left, top, right, bottom)
29
+
30
+
31
+ def align_crop_face_landmarks(img,
32
+ landmarks,
33
+ output_size,
34
+ transform_size=None,
35
+ enable_padding=True,
36
+ return_inverse_affine=False,
37
+ shrink_ratio=(1, 1)):
38
+ """Align and crop face with landmarks.
39
+
40
+ The output_size and transform_size are based on width. The height is
41
+ adjusted based on shrink_ratio_h/shring_ration_w.
42
+
43
+ Modified from:
44
+ https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
45
+
46
+ Args:
47
+ img (Numpy array): Input image.
48
+ landmarks (Numpy array): 5 or 68 or 98 landmarks.
49
+ output_size (int): Output face size.
50
+ transform_size (ing): Transform size. Usually the four time of
51
+ output_size.
52
+ enable_padding (float): Default: True.
53
+ shrink_ratio (float | tuple[float] | list[float]): Shring the whole
54
+ face for height and width (crop larger area). Default: (1, 1).
55
+
56
+ Returns:
57
+ (Numpy array): Cropped face.
58
+ """
59
+ lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
60
+
61
+ if isinstance(shrink_ratio, (float, int)):
62
+ shrink_ratio = (shrink_ratio, shrink_ratio)
63
+ if transform_size is None:
64
+ transform_size = output_size * 4
65
+
66
+ # Parse landmarks
67
+ lm = np.array(landmarks)
68
+ if lm.shape[0] == 5 and lm_type == 'retinaface_5':
69
+ eye_left = lm[0]
70
+ eye_right = lm[1]
71
+ mouth_avg = (lm[3] + lm[4]) * 0.5
72
+ elif lm.shape[0] == 5 and lm_type == 'dlib_5':
73
+ lm_eye_left = lm[2:4]
74
+ lm_eye_right = lm[0:2]
75
+ eye_left = np.mean(lm_eye_left, axis=0)
76
+ eye_right = np.mean(lm_eye_right, axis=0)
77
+ mouth_avg = lm[4]
78
+ elif lm.shape[0] == 68:
79
+ lm_eye_left = lm[36:42]
80
+ lm_eye_right = lm[42:48]
81
+ eye_left = np.mean(lm_eye_left, axis=0)
82
+ eye_right = np.mean(lm_eye_right, axis=0)
83
+ mouth_avg = (lm[48] + lm[54]) * 0.5
84
+ elif lm.shape[0] == 98:
85
+ lm_eye_left = lm[60:68]
86
+ lm_eye_right = lm[68:76]
87
+ eye_left = np.mean(lm_eye_left, axis=0)
88
+ eye_right = np.mean(lm_eye_right, axis=0)
89
+ mouth_avg = (lm[76] + lm[82]) * 0.5
90
+
91
+ eye_avg = (eye_left + eye_right) * 0.5
92
+ eye_to_eye = eye_right - eye_left
93
+ eye_to_mouth = mouth_avg - eye_avg
94
+
95
+ # Get the oriented crop rectangle
96
+ # x: half width of the oriented crop rectangle
97
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
98
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
99
+ # norm with the hypotenuse: get the direction
100
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
101
+ rect_scale = 1 # TODO: you can edit it to get larger rect
102
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
103
+ # y: half height of the oriented crop rectangle
104
+ y = np.flipud(x) * [-1, 1]
105
+
106
+ x *= shrink_ratio[1] # width
107
+ y *= shrink_ratio[0] # height
108
+
109
+ # c: center
110
+ c = eye_avg + eye_to_mouth * 0.1
111
+ # quad: (left_top, left_bottom, right_bottom, right_top)
112
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
113
+ # qsize: side length of the square
114
+ qsize = np.hypot(*x) * 2
115
+
116
+ quad_ori = np.copy(quad)
117
+ # Shrink, for large face
118
+ # TODO: do we really need shrink
119
+ shrink = int(np.floor(qsize / output_size * 0.5))
120
+ if shrink > 1:
121
+ h, w = img.shape[0:2]
122
+ rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
123
+ img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
124
+ quad /= shrink
125
+ qsize /= shrink
126
+
127
+ # Crop
128
+ h, w = img.shape[0:2]
129
+ border = max(int(np.rint(qsize * 0.1)), 3)
130
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
131
+ int(np.ceil(max(quad[:, 1]))))
132
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
133
+ if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
134
+ img = img[crop[1]:crop[3], crop[0]:crop[2], :]
135
+ quad -= crop[0:2]
136
+
137
+ # Pad
138
+ # pad: (width_left, height_top, width_right, height_bottom)
139
+ h, w = img.shape[0:2]
140
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
141
+ int(np.ceil(max(quad[:, 1]))))
142
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
143
+ if enable_padding and max(pad) > border - 4:
144
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
145
+ img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
146
+ h, w = img.shape[0:2]
147
+ y, x, _ = np.ogrid[:h, :w, :1]
148
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
149
+ np.float32(w - 1 - x) / pad[2]),
150
+ 1.0 - np.minimum(np.float32(y) / pad[1],
151
+ np.float32(h - 1 - y) / pad[3]))
152
+ blur = int(qsize * 0.02)
153
+ if blur % 2 == 0:
154
+ blur += 1
155
+ blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
156
+
157
+ img = img.astype('float32')
158
+ img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
159
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
160
+ img = np.clip(img, 0, 255) # float32, [0, 255]
161
+ quad += pad[:2]
162
+
163
+ # Transform use cv2
164
+ h_ratio = shrink_ratio[0] / shrink_ratio[1]
165
+ dst_h, dst_w = int(transform_size * h_ratio), transform_size
166
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
167
+ # use cv2.LMEDS method for the equivalence to skimage transform
168
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
169
+ affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
170
+ cropped_face = cv2.warpAffine(
171
+ img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
172
+
173
+ if output_size < transform_size:
174
+ cropped_face = cv2.resize(
175
+ cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
176
+
177
+ if return_inverse_affine:
178
+ dst_h, dst_w = int(output_size * h_ratio), output_size
179
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
180
+ # use cv2.LMEDS method for the equivalence to skimage transform
181
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
182
+ affine_matrix = cv2.estimateAffinePartial2D(
183
+ quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
184
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
185
+ else:
186
+ inverse_affine = None
187
+ return cropped_face, inverse_affine
188
+
189
+
190
+ def paste_face_back(img, face, inverse_affine):
191
+ h, w = img.shape[0:2]
192
+ face_h, face_w = face.shape[0:2]
193
+ inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
194
+ mask = np.ones((face_h, face_w, 3), dtype=np.float32)
195
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
196
+ # remove the black borders
197
+ inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
198
+ inv_restored_remove_border = inv_mask_erosion * inv_restored
199
+ total_face_area = np.sum(inv_mask_erosion) // 3
200
+ # compute the fusion edge based on the area of face
201
+ w_edge = int(total_face_area**0.5) // 20
202
+ erosion_radius = w_edge * 2
203
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
204
+ blur_size = w_edge * 2
205
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
206
+ img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
207
+ # float32, [0, 255]
208
+ return img
209
+
210
+
211
+ if __name__ == '__main__':
212
+ import os
213
+
214
+ from facelib.detection import init_detection_model
215
+ from facelib.utils.face_restoration_helper import get_largest_face
216
+
217
+ img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
218
+ img_name = os.splitext(os.path.basename(img_path))[0]
219
+
220
+ # initialize model
221
+ det_net = init_detection_model('retinaface_resnet50', half=False)
222
+ img_ori = cv2.imread(img_path)
223
+ h, w = img_ori.shape[0:2]
224
+ # if larger than 800, scale it
225
+ scale = max(h / 800, w / 800)
226
+ if scale > 1:
227
+ img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
228
+
229
+ with torch.no_grad():
230
+ bboxes = det_net.detect_faces(img, 0.97)
231
+ if scale > 1:
232
+ bboxes *= scale # the score is incorrect
233
+ bboxes = get_largest_face(bboxes, h, w)[0]
234
+
235
+ landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
236
+
237
+ cropped_face, inverse_affine = align_crop_face_landmarks(
238
+ img_ori,
239
+ landmarks,
240
+ output_size=512,
241
+ transform_size=None,
242
+ enable_padding=True,
243
+ return_inverse_affine=True,
244
+ shrink_ratio=(1, 1))
245
+
246
+ cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
247
+ img = paste_face_back(img_ori, cropped_face, inverse_affine)
248
+ cv2.imwrite(f'tmp/{img_name}_back.png', img)
facelib/utils/misc.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import os.path as osp
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+ from torch.hub import download_url_to_file, get_dir
8
+ from urllib.parse import urlparse
9
+ # from models.utils.download_util import download_file_from_google_drive
10
+
11
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
12
+
13
+
14
+ def download_pretrained_models(file_ids, save_path_root):
15
+ import gdown
16
+
17
+ os.makedirs(save_path_root, exist_ok=True)
18
+
19
+ for file_name, file_id in file_ids.items():
20
+ file_url = 'https://drive.google.com/uc?id='+file_id
21
+ save_path = osp.abspath(osp.join(save_path_root, file_name))
22
+ if osp.exists(save_path):
23
+ user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n')
24
+ if user_response.lower() == 'y':
25
+ print(f'Covering {file_name} to {save_path}')
26
+ gdown.download(file_url, save_path, quiet=False)
27
+ # download_file_from_google_drive(file_id, save_path)
28
+ elif user_response.lower() == 'n':
29
+ print(f'Skipping {file_name}')
30
+ else:
31
+ raise ValueError('Wrong input. Only accepts Y/N.')
32
+ else:
33
+ print(f'Downloading {file_name} to {save_path}')
34
+ gdown.download(file_url, save_path, quiet=False)
35
+ # download_file_from_google_drive(file_id, save_path)
36
+
37
+
38
+ def imwrite(img, file_path, params=None, auto_mkdir=True):
39
+ """Write image to file.
40
+
41
+ Args:
42
+ img (ndarray): Image array to be written.
43
+ file_path (str): Image file path.
44
+ params (None or list): Same as opencv's :func:`imwrite` interface.
45
+ auto_mkdir (bool): If the parent folder of `file_path` does not exist,
46
+ whether to create it automatically.
47
+
48
+ Returns:
49
+ bool: Successful or not.
50
+ """
51
+ if auto_mkdir:
52
+ dir_name = os.path.abspath(os.path.dirname(file_path))
53
+ os.makedirs(dir_name, exist_ok=True)
54
+ return cv2.imwrite(file_path, img, params)
55
+
56
+
57
+ def img2tensor(imgs, bgr2rgb=True, float32=True):
58
+ """Numpy array to tensor.
59
+
60
+ Args:
61
+ imgs (list[ndarray] | ndarray): Input images.
62
+ bgr2rgb (bool): Whether to change bgr to rgb.
63
+ float32 (bool): Whether to change to float32.
64
+
65
+ Returns:
66
+ list[tensor] | tensor: Tensor images. If returned results only have
67
+ one element, just return tensor.
68
+ """
69
+
70
+ def _totensor(img, bgr2rgb, float32):
71
+ if img.shape[2] == 3 and bgr2rgb:
72
+ if img.dtype == 'float64':
73
+ img = img.astype('float32')
74
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
75
+ img = torch.from_numpy(img.transpose(2, 0, 1))
76
+ if float32:
77
+ img = img.float()
78
+ return img
79
+
80
+ if isinstance(imgs, list):
81
+ return [_totensor(img, bgr2rgb, float32) for img in imgs]
82
+ else:
83
+ return _totensor(imgs, bgr2rgb, float32)
84
+
85
+
86
+ def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
87
+ """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
88
+ """
89
+ if model_dir is None:
90
+ hub_dir = get_dir()
91
+ model_dir = os.path.join(hub_dir, 'checkpoints')
92
+
93
+ os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)
94
+
95
+ parts = urlparse(url)
96
+ filename = os.path.basename(parts.path)
97
+ if file_name is not None:
98
+ filename = file_name
99
+ cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
100
+ if not os.path.exists(cached_file):
101
+ print(f'Downloading: "{url}" to {cached_file}\n')
102
+ download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
103
+ return cached_file
104
+
105
+
106
+ def scandir(dir_path, suffix=None, recursive=False, full_path=False):
107
+ """Scan a directory to find the interested files.
108
+ Args:
109
+ dir_path (str): Path of the directory.
110
+ suffix (str | tuple(str), optional): File suffix that we are
111
+ interested in. Default: None.
112
+ recursive (bool, optional): If set to True, recursively scan the
113
+ directory. Default: False.
114
+ full_path (bool, optional): If set to True, include the dir_path.
115
+ Default: False.
116
+ Returns:
117
+ A generator for all the interested files with relative paths.
118
+ """
119
+
120
+ if (suffix is not None) and not isinstance(suffix, (str, tuple)):
121
+ raise TypeError('"suffix" must be a string or tuple of strings')
122
+
123
+ root = dir_path
124
+
125
+ def _scandir(dir_path, suffix, recursive):
126
+ for entry in os.scandir(dir_path):
127
+ if not entry.name.startswith('.') and entry.is_file():
128
+ if full_path:
129
+ return_path = entry.path
130
+ else:
131
+ return_path = osp.relpath(entry.path, root)
132
+
133
+ if suffix is None:
134
+ yield return_path
135
+ elif return_path.endswith(suffix):
136
+ yield return_path
137
+ else:
138
+ if recursive:
139
+ yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
140
+ else:
141
+ continue
142
+
143
+ return _scandir(dir_path, suffix=suffix, recursive=recursive)
144
+
145
+
146
+ def is_gray(img, threshold=10):
147
+ img = Image.fromarray(img)
148
+ if len(img.getbands()) == 1:
149
+ return True
150
+ img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
151
+ img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
152
+ img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
153
+ diff1 = (img1 - img2).var()
154
+ diff2 = (img2 - img3).var()
155
+ diff3 = (img3 - img1).var()
156
+ diff_sum = (diff1 + diff2 + diff3) / 3.0
157
+ if diff_sum <= threshold:
158
+ return True
159
+ else:
160
+ return False
161
+
162
+ def rgb2gray(img, out_channel=3):
163
+ r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
164
+ gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
165
+ if out_channel == 3:
166
+ gray = gray[:,:,np.newaxis].repeat(3, axis=2)
167
+ return gray
168
+
169
+ def bgr2gray(img, out_channel=3):
170
+ b, g, r = img[:,:,0], img[:,:,1], img[:,:,2]
171
+ gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
172
+ if out_channel == 3:
173
+ gray = gray[:,:,np.newaxis].repeat(3, axis=2)
174
+ return gray
175
+
176
+
177
+ def calc_mean_std(feat, eps=1e-5):
178
+ """
179
+ Args:
180
+ feat (numpy): 3D [w h c]s
181
+ """
182
+ size = feat.shape
183
+ assert len(size) == 3, 'The input feature should be 3D tensor.'
184
+ c = size[2]
185
+ feat_var = feat.reshape(-1, c).var(axis=0) + eps
186
+ feat_std = np.sqrt(feat_var).reshape(1, 1, c)
187
+ feat_mean = feat.reshape(-1, c).mean(axis=0).reshape(1, 1, c)
188
+ return feat_mean, feat_std
189
+
190
+
191
+ def adain_npy(content_feat, style_feat):
192
+ """Adaptive instance normalization for numpy.
193
+
194
+ Args:
195
+ content_feat (numpy): The input feature.
196
+ style_feat (numpy): The reference feature.
197
+ """
198
+ size = content_feat.shape
199
+ style_mean, style_std = calc_mean_std(style_feat)
200
+ content_mean, content_std = calc_mean_std(content_feat)
201
+ normalized_feat = (content_feat - np.broadcast_to(content_mean, size)) / np.broadcast_to(content_std, size)
202
+ return normalized_feat * np.broadcast_to(style_std, size) + np.broadcast_to(style_mean, size)
models/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .codeformer import CodeFormer
2
+ from .vqgan import *
models/codeformer.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #######################################################################################
2
+ #
3
+ # MIT License
4
+ #
5
+ # Copyright (c) [2025] [leonelhs@gmail.com]
6
+ #
7
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ # of this software and associated documentation files (the "Software"), to deal
9
+ # in the Software without restriction, including without limitation the rights
10
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ # copies of the Software, and to permit persons to whom the Software is
12
+ # furnished to do so, subject to the following conditions:
13
+ #
14
+ # The above copyright notice and this permission notice shall be included in all
15
+ # copies or substantial portions of the Software.
16
+ #
17
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
+ # SOFTWARE.
24
+ #
25
+ #######################################################################################
26
+ #
27
+ # Source code is based on or inspired by several projects.
28
+ # For more details and proper attribution, please refer to the following resources:
29
+ #
30
+ # - [taming-transformers] - [https://github.com/CompVis/taming-transformers.git]
31
+ # - [unleashing-transformers] - [https://github.com/samb-t/unleashing-transformers.git]
32
+ # - [CodeFormer] - [https://huggingface.co/spaces/sczhou/CodeFormer]
33
+ # - [Self space] - [https://huggingface.co/spaces/leonelhs/CodeFormer]
34
+
35
+ import math
36
+ from typing import Optional
37
+ from torch import Tensor
38
+ from models.vqgan import *
39
+
40
+
41
+ def calc_mean_std(feat, eps=1e-5):
42
+ """Calculate mean and std for adaptive_instance_normalization.
43
+
44
+ Args:
45
+ feat (Tensor): 4D tensor.
46
+ eps (float): A small value added to the variance to avoid
47
+ divide-by-zero. Default: 1e-5.
48
+ """
49
+ size = feat.size()
50
+ assert len(size) == 4, 'The input feature should be 4D tensor.'
51
+ b, c = size[:2]
52
+ feat_var = feat.view(b, c, -1).var(dim=2) + eps
53
+ feat_std = feat_var.sqrt().view(b, c, 1, 1)
54
+ feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
55
+ return feat_mean, feat_std
56
+
57
+
58
+ def adaptive_instance_normalization(content_feat, style_feat):
59
+ """Adaptive instance normalization.
60
+
61
+ Adjust the reference features to have the similar color and illuminations
62
+ as those in the degradate features.
63
+
64
+ Args:
65
+ content_feat (Tensor): The reference feature.
66
+ style_feat (Tensor): The degradate features.
67
+ """
68
+ size = content_feat.size()
69
+ style_mean, style_std = calc_mean_std(style_feat)
70
+ content_mean, content_std = calc_mean_std(content_feat)
71
+ normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
72
+ return normalized_feat * style_std.expand(size) + style_mean.expand(size)
73
+
74
+
75
+ class PositionEmbeddingSine(nn.Module):
76
+ """
77
+ This is a more standard version of the position embedding, very similar to the one
78
+ used by the Attention is all you need paper, generalized to work on images.
79
+ """
80
+
81
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
82
+ super().__init__()
83
+ self.num_pos_feats = num_pos_feats
84
+ self.temperature = temperature
85
+ self.normalize = normalize
86
+ if scale is not None and normalize is False:
87
+ raise ValueError("normalize should be True if scale is passed")
88
+ if scale is None:
89
+ scale = 2 * math.pi
90
+ self.scale = scale
91
+
92
+ def forward(self, x, mask=None):
93
+ if mask is None:
94
+ mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
95
+ not_mask = ~mask
96
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
97
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
98
+ if self.normalize:
99
+ eps = 1e-6
100
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
101
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
102
+
103
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
104
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
105
+
106
+ pos_x = x_embed[:, :, :, None] / dim_t
107
+ pos_y = y_embed[:, :, :, None] / dim_t
108
+ pos_x = torch.stack(
109
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
110
+ ).flatten(3)
111
+ pos_y = torch.stack(
112
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
113
+ ).flatten(3)
114
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
115
+ return pos
116
+
117
+ def _get_activation_fn(activation):
118
+ """Return an activation function given a string"""
119
+ if activation == "relu":
120
+ return F.relu
121
+ if activation == "gelu":
122
+ return F.gelu
123
+ if activation == "glu":
124
+ return F.glu
125
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
126
+
127
+
128
+ class TransformerSALayer(nn.Module):
129
+ def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
130
+ super().__init__()
131
+ self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
132
+ # Implementation of Feedforward model - MLP
133
+ self.linear1 = nn.Linear(embed_dim, dim_mlp)
134
+ self.dropout = nn.Dropout(dropout)
135
+ self.linear2 = nn.Linear(dim_mlp, embed_dim)
136
+
137
+ self.norm1 = nn.LayerNorm(embed_dim)
138
+ self.norm2 = nn.LayerNorm(embed_dim)
139
+ self.dropout1 = nn.Dropout(dropout)
140
+ self.dropout2 = nn.Dropout(dropout)
141
+
142
+ self.activation = _get_activation_fn(activation)
143
+
144
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
145
+ return tensor if pos is None else tensor + pos
146
+
147
+ def forward(self, tgt,
148
+ tgt_mask: Optional[Tensor] = None,
149
+ tgt_key_padding_mask: Optional[Tensor] = None,
150
+ query_pos: Optional[Tensor] = None):
151
+
152
+ # self attention
153
+ tgt2 = self.norm1(tgt)
154
+ q = k = self.with_pos_embed(tgt2, query_pos)
155
+ tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
156
+ key_padding_mask=tgt_key_padding_mask)[0]
157
+ tgt = tgt + self.dropout1(tgt2)
158
+
159
+ # ffn
160
+ tgt2 = self.norm2(tgt)
161
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
162
+ tgt = tgt + self.dropout2(tgt2)
163
+ return tgt
164
+
165
+ class Fuse_sft_block(nn.Module):
166
+ def __init__(self, in_ch, out_ch):
167
+ super().__init__()
168
+ self.encode_enc = ResBlock(2*in_ch, out_ch)
169
+
170
+ self.scale = nn.Sequential(
171
+ nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
172
+ nn.LeakyReLU(0.2, True),
173
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
174
+
175
+ self.shift = nn.Sequential(
176
+ nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
177
+ nn.LeakyReLU(0.2, True),
178
+ nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
179
+
180
+ def forward(self, enc_feat, dec_feat, w=1):
181
+ enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
182
+ scale = self.scale(enc_feat)
183
+ shift = self.shift(enc_feat)
184
+ residual = w * (dec_feat * scale + shift)
185
+ out = dec_feat + residual
186
+ return out
187
+
188
+
189
+ class CodeFormer(VQAutoEncoder):
190
+ def __init__(self, dim_embd=512, n_head=8, n_layers=9,
191
+ codebook_size=1024, latent_size=256,
192
+ connect_list=['32', '64', '128', '256'],
193
+ fix_modules=['quantize','generator']):
194
+ super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
195
+
196
+ if fix_modules is not None:
197
+ for module in fix_modules:
198
+ for param in getattr(self, module).parameters():
199
+ param.requires_grad = False
200
+
201
+ self.connect_list = connect_list
202
+ self.n_layers = n_layers
203
+ self.dim_embd = dim_embd
204
+ self.dim_mlp = dim_embd*2
205
+
206
+ self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
207
+ self.feat_emb = nn.Linear(256, self.dim_embd)
208
+
209
+ # transformer
210
+ self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
211
+ for _ in range(self.n_layers)])
212
+
213
+ # logits_predict head
214
+ self.idx_pred_layer = nn.Sequential(
215
+ nn.LayerNorm(dim_embd),
216
+ nn.Linear(dim_embd, codebook_size, bias=False))
217
+
218
+ self.channels = {
219
+ '16': 512,
220
+ '32': 256,
221
+ '64': 256,
222
+ '128': 128,
223
+ '256': 128,
224
+ '512': 64,
225
+ }
226
+
227
+ # after second residual block for > 16, before attn layer for ==16
228
+ self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
229
+ # after first residual block for > 16, before attn layer for ==16
230
+ self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}
231
+
232
+ # fuse_convs_dict
233
+ self.fuse_convs_dict = nn.ModuleDict()
234
+ for f_size in self.connect_list:
235
+ in_ch = self.channels[f_size]
236
+ self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
237
+
238
+ def _init_weights(self, module):
239
+ if isinstance(module, (nn.Linear, nn.Embedding)):
240
+ module.weight.data.normal_(mean=0.0, std=0.02)
241
+ if isinstance(module, nn.Linear) and module.bias is not None:
242
+ module.bias.data.zero_()
243
+ elif isinstance(module, nn.LayerNorm):
244
+ module.bias.data.zero_()
245
+ module.weight.data.fill_(1.0)
246
+
247
+ def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
248
+ # ################### Encoder #####################
249
+ enc_feat_dict = {}
250
+ out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
251
+ for i, block in enumerate(self.encoder.blocks):
252
+ x = block(x)
253
+ if i in out_list:
254
+ enc_feat_dict[str(x.shape[-1])] = x.clone()
255
+
256
+ lq_feat = x
257
+ # ################# Transformer ###################
258
+ # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
259
+ pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
260
+ # BCHW -> BC(HW) -> (HW)BC
261
+ feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
262
+ query_emb = feat_emb
263
+ # Transformer encoder
264
+ for layer in self.ft_layers:
265
+ query_emb = layer(query_emb, query_pos=pos_emb)
266
+
267
+ # output logits
268
+ logits = self.idx_pred_layer(query_emb) # (hw)bn
269
+ logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n
270
+
271
+ if code_only: # for training stage II
272
+ # logits doesn't need softmax before cross_entropy loss
273
+ return logits, lq_feat
274
+
275
+ # ################# Quantization ###################
276
+ # if self.training:
277
+ # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
278
+ # # b(hw)c -> bc(hw) -> bchw
279
+ # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
280
+ # ------------
281
+ soft_one_hot = F.softmax(logits, dim=2)
282
+ _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
283
+ quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
284
+ # preserve gradients
285
+ # quant_feat = lq_feat + (quant_feat - lq_feat).detach()
286
+
287
+ if detach_16:
288
+ quant_feat = quant_feat.detach() # for training stage III
289
+ if adain:
290
+ quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
291
+
292
+ # ################## Generator ####################
293
+ x = quant_feat
294
+ fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
295
+
296
+ for i, block in enumerate(self.generator.blocks):
297
+ x = block(x)
298
+ if i in fuse_list: # fuse after i-th block
299
+ f_size = str(x.shape[-1])
300
+ if w>0:
301
+ x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
302
+ out = x
303
+ # logits doesn't need softmax before cross_entropy loss
304
+ return out, logits, lq_feat
models/vqgan.py ADDED
@@ -0,0 +1,467 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #######################################################################################
2
+ #
3
+ # MIT License
4
+ #
5
+ # Copyright (c) [2025] [leonelhs@gmail.com]
6
+ #
7
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ # of this software and associated documentation files (the "Software"), to deal
9
+ # in the Software without restriction, including without limitation the rights
10
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ # copies of the Software, and to permit persons to whom the Software is
12
+ # furnished to do so, subject to the following conditions:
13
+ #
14
+ # The above copyright notice and this permission notice shall be included in all
15
+ # copies or substantial portions of the Software.
16
+ #
17
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
+ # SOFTWARE.
24
+ #
25
+ #######################################################################################
26
+ #
27
+ # Source code is based on or inspired by several projects.
28
+ # For more details and proper attribution, please refer to the following resources:
29
+ #
30
+ # - [taming-transformers] - [https://github.com/CompVis/taming-transformers.git]
31
+ # - [unleashing-transformers] - [https://github.com/samb-t/unleashing-transformers.git]
32
+ # - [CodeFormer] - [https://huggingface.co/spaces/sczhou/CodeFormer]
33
+ # - [Self space] - [https://huggingface.co/spaces/leonelhs/CodeFormer]
34
+ #
35
+ # VQGAN code, adapted from the original created by the Unleashing Transformers authors:
36
+ # https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
37
+ #
38
+
39
+ import torch
40
+ import torch.nn as nn
41
+ import torch.nn.functional as F
42
+
43
+
44
+ class Logger:
45
+ def info(self, msg):
46
+ print(msg)
47
+
48
+ def normalize(in_channels):
49
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
50
+
51
+
52
+ @torch.jit.script
53
+ def swish(x):
54
+ return x*torch.sigmoid(x)
55
+
56
+
57
+ # Define VQVAE classes
58
+ class VectorQuantizer(nn.Module):
59
+ def __init__(self, codebook_size, emb_dim, beta):
60
+ super(VectorQuantizer, self).__init__()
61
+ self.codebook_size = codebook_size # number of embeddings
62
+ self.emb_dim = emb_dim # dimension of embedding
63
+ self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
64
+ self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
65
+ self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
66
+
67
+ def forward(self, z):
68
+ # reshape z -> (batch, height, width, channel) and flatten
69
+ z = z.permute(0, 2, 3, 1).contiguous()
70
+ z_flattened = z.view(-1, self.emb_dim)
71
+
72
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
73
+ d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
74
+ 2 * torch.matmul(z_flattened, self.embedding.weight.t())
75
+
76
+ mean_distance = torch.mean(d)
77
+ # find closest encodings
78
+ # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
79
+ min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
80
+ # [0-1], higher score, higher confidence
81
+ min_encoding_scores = torch.exp(-min_encoding_scores/10)
82
+
83
+ min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
84
+ min_encodings.scatter_(1, min_encoding_indices, 1)
85
+
86
+ # get quantized latent vectors
87
+ z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
88
+ # compute loss for embedding
89
+ loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
90
+ # preserve gradients
91
+ z_q = z + (z_q - z).detach()
92
+
93
+ # perplexity
94
+ e_mean = torch.mean(min_encodings, dim=0)
95
+ perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
96
+ # reshape back to match original input shape
97
+ z_q = z_q.permute(0, 3, 1, 2).contiguous()
98
+
99
+ return z_q, loss, {
100
+ "perplexity": perplexity,
101
+ "min_encodings": min_encodings,
102
+ "min_encoding_indices": min_encoding_indices,
103
+ "min_encoding_scores": min_encoding_scores,
104
+ "mean_distance": mean_distance
105
+ }
106
+
107
+ def get_codebook_feat(self, indices, shape):
108
+ # input indices: batch*token_num -> (batch*token_num)*1
109
+ # shape: batch, height, width, channel
110
+ indices = indices.view(-1,1)
111
+ min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
112
+ min_encodings.scatter_(1, indices, 1)
113
+ # get quantized latent vectors
114
+ z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
115
+
116
+ if shape is not None: # reshape back to match original input shape
117
+ z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
118
+
119
+ return z_q
120
+
121
+
122
+ class GumbelQuantizer(nn.Module):
123
+ def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
124
+ super().__init__()
125
+ self.codebook_size = codebook_size # number of embeddings
126
+ self.emb_dim = emb_dim # dimension of embedding
127
+ self.straight_through = straight_through
128
+ self.temperature = temp_init
129
+ self.kl_weight = kl_weight
130
+ self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
131
+ self.embed = nn.Embedding(codebook_size, emb_dim)
132
+
133
+ def forward(self, z):
134
+ hard = self.straight_through if self.training else True
135
+
136
+ logits = self.proj(z)
137
+
138
+ soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
139
+
140
+ z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
141
+
142
+ # + kl divergence to the prior loss
143
+ qy = F.softmax(logits, dim=1)
144
+ diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
145
+ min_encoding_indices = soft_one_hot.argmax(dim=1)
146
+
147
+ return z_q, diff, {
148
+ "min_encoding_indices": min_encoding_indices
149
+ }
150
+
151
+
152
+ class Downsample(nn.Module):
153
+ def __init__(self, in_channels):
154
+ super().__init__()
155
+ self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
156
+
157
+ def forward(self, x):
158
+ pad = (0, 1, 0, 1)
159
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
160
+ x = self.conv(x)
161
+ return x
162
+
163
+
164
+ class Upsample(nn.Module):
165
+ def __init__(self, in_channels):
166
+ super().__init__()
167
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
168
+
169
+ def forward(self, x):
170
+ x = F.interpolate(x, scale_factor=2.0, mode="nearest")
171
+ x = self.conv(x)
172
+
173
+ return x
174
+
175
+
176
+ class ResBlock(nn.Module):
177
+ def __init__(self, in_channels, out_channels=None):
178
+ super(ResBlock, self).__init__()
179
+ self.in_channels = in_channels
180
+ self.out_channels = in_channels if out_channels is None else out_channels
181
+ self.norm1 = normalize(in_channels)
182
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
183
+ self.norm2 = normalize(out_channels)
184
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
185
+ if self.in_channels != self.out_channels:
186
+ self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
187
+
188
+ def forward(self, x_in):
189
+ x = x_in
190
+ x = self.norm1(x)
191
+ x = swish(x)
192
+ x = self.conv1(x)
193
+ x = self.norm2(x)
194
+ x = swish(x)
195
+ x = self.conv2(x)
196
+ if self.in_channels != self.out_channels:
197
+ x_in = self.conv_out(x_in)
198
+
199
+ return x + x_in
200
+
201
+
202
+ class AttnBlock(nn.Module):
203
+ def __init__(self, in_channels):
204
+ super().__init__()
205
+ self.in_channels = in_channels
206
+
207
+ self.norm = normalize(in_channels)
208
+ self.q = torch.nn.Conv2d(
209
+ in_channels,
210
+ in_channels,
211
+ kernel_size=1,
212
+ stride=1,
213
+ padding=0
214
+ )
215
+ self.k = torch.nn.Conv2d(
216
+ in_channels,
217
+ in_channels,
218
+ kernel_size=1,
219
+ stride=1,
220
+ padding=0
221
+ )
222
+ self.v = torch.nn.Conv2d(
223
+ in_channels,
224
+ in_channels,
225
+ kernel_size=1,
226
+ stride=1,
227
+ padding=0
228
+ )
229
+ self.proj_out = torch.nn.Conv2d(
230
+ in_channels,
231
+ in_channels,
232
+ kernel_size=1,
233
+ stride=1,
234
+ padding=0
235
+ )
236
+
237
+ def forward(self, x):
238
+ h_ = x
239
+ h_ = self.norm(h_)
240
+ q = self.q(h_)
241
+ k = self.k(h_)
242
+ v = self.v(h_)
243
+
244
+ # compute attention
245
+ b, c, h, w = q.shape
246
+ q = q.reshape(b, c, h*w)
247
+ q = q.permute(0, 2, 1)
248
+ k = k.reshape(b, c, h*w)
249
+ w_ = torch.bmm(q, k)
250
+ w_ = w_ * (int(c)**(-0.5))
251
+ w_ = F.softmax(w_, dim=2)
252
+
253
+ # attend to values
254
+ v = v.reshape(b, c, h*w)
255
+ w_ = w_.permute(0, 2, 1)
256
+ h_ = torch.bmm(v, w_)
257
+ h_ = h_.reshape(b, c, h, w)
258
+
259
+ h_ = self.proj_out(h_)
260
+
261
+ return x+h_
262
+
263
+
264
+ class Encoder(nn.Module):
265
+ def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions):
266
+ super().__init__()
267
+ self.nf = nf
268
+ self.num_resolutions = len(ch_mult)
269
+ self.num_res_blocks = num_res_blocks
270
+ self.resolution = resolution
271
+ self.attn_resolutions = attn_resolutions
272
+
273
+ curr_res = self.resolution
274
+ in_ch_mult = (1,)+tuple(ch_mult)
275
+
276
+ blocks = []
277
+ # initial convultion
278
+ blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
279
+
280
+ # residual and downsampling blocks, with attention on smaller res (16x16)
281
+ for i in range(self.num_resolutions):
282
+ block_in_ch = nf * in_ch_mult[i]
283
+ block_out_ch = nf * ch_mult[i]
284
+ for _ in range(self.num_res_blocks):
285
+ blocks.append(ResBlock(block_in_ch, block_out_ch))
286
+ block_in_ch = block_out_ch
287
+ if curr_res in attn_resolutions:
288
+ blocks.append(AttnBlock(block_in_ch))
289
+
290
+ if i != self.num_resolutions - 1:
291
+ blocks.append(Downsample(block_in_ch))
292
+ curr_res = curr_res // 2
293
+
294
+ # non-local attention block
295
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
296
+ blocks.append(AttnBlock(block_in_ch))
297
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
298
+
299
+ # normalise and convert to latent size
300
+ blocks.append(normalize(block_in_ch))
301
+ blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1))
302
+ self.blocks = nn.ModuleList(blocks)
303
+
304
+ def forward(self, x):
305
+ for block in self.blocks:
306
+ x = block(x)
307
+
308
+ return x
309
+
310
+
311
+ class Generator(nn.Module):
312
+ def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
313
+ super().__init__()
314
+ self.nf = nf
315
+ self.ch_mult = ch_mult
316
+ self.num_resolutions = len(self.ch_mult)
317
+ self.num_res_blocks = res_blocks
318
+ self.resolution = img_size
319
+ self.attn_resolutions = attn_resolutions
320
+ self.in_channels = emb_dim
321
+ self.out_channels = 3
322
+ block_in_ch = self.nf * self.ch_mult[-1]
323
+ curr_res = self.resolution // 2 ** (self.num_resolutions-1)
324
+
325
+ blocks = []
326
+ # initial conv
327
+ blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
328
+
329
+ # non-local attention block
330
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
331
+ blocks.append(AttnBlock(block_in_ch))
332
+ blocks.append(ResBlock(block_in_ch, block_in_ch))
333
+
334
+ for i in reversed(range(self.num_resolutions)):
335
+ block_out_ch = self.nf * self.ch_mult[i]
336
+
337
+ for _ in range(self.num_res_blocks):
338
+ blocks.append(ResBlock(block_in_ch, block_out_ch))
339
+ block_in_ch = block_out_ch
340
+
341
+ if curr_res in self.attn_resolutions:
342
+ blocks.append(AttnBlock(block_in_ch))
343
+
344
+ if i != 0:
345
+ blocks.append(Upsample(block_in_ch))
346
+ curr_res = curr_res * 2
347
+
348
+ blocks.append(normalize(block_in_ch))
349
+ blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
350
+
351
+ self.blocks = nn.ModuleList(blocks)
352
+
353
+
354
+ def forward(self, x):
355
+ for block in self.blocks:
356
+ x = block(x)
357
+
358
+ return x
359
+
360
+
361
+ class VQAutoEncoder(nn.Module):
362
+ def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
363
+ beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
364
+ super().__init__()
365
+ logger = Logger()
366
+ self.in_channels = 3
367
+ self.nf = nf
368
+ self.n_blocks = res_blocks
369
+ self.codebook_size = codebook_size
370
+ self.embed_dim = emb_dim
371
+ self.ch_mult = ch_mult
372
+ self.resolution = img_size
373
+ self.attn_resolutions = attn_resolutions
374
+ self.quantizer_type = quantizer
375
+ self.encoder = Encoder(
376
+ self.in_channels,
377
+ self.nf,
378
+ self.embed_dim,
379
+ self.ch_mult,
380
+ self.n_blocks,
381
+ self.resolution,
382
+ self.attn_resolutions
383
+ )
384
+ if self.quantizer_type == "nearest":
385
+ self.beta = beta #0.25
386
+ self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
387
+ elif self.quantizer_type == "gumbel":
388
+ self.gumbel_num_hiddens = emb_dim
389
+ self.straight_through = gumbel_straight_through
390
+ self.kl_weight = gumbel_kl_weight
391
+ self.quantize = GumbelQuantizer(
392
+ self.codebook_size,
393
+ self.embed_dim,
394
+ self.gumbel_num_hiddens,
395
+ self.straight_through,
396
+ self.kl_weight
397
+ )
398
+ self.generator = Generator(
399
+ self.nf,
400
+ self.embed_dim,
401
+ self.ch_mult,
402
+ self.n_blocks,
403
+ self.resolution,
404
+ self.attn_resolutions
405
+ )
406
+
407
+ if model_path is not None:
408
+ chkpt = torch.load(model_path, map_location='cpu')
409
+ if 'params_ema' in chkpt:
410
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
411
+ logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
412
+ elif 'params' in chkpt:
413
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
414
+ logger.info(f'vqgan is loaded from: {model_path} [params]')
415
+ else:
416
+ raise ValueError(f'Wrong params!')
417
+
418
+
419
+ def forward(self, x):
420
+ x = self.encoder(x)
421
+ quant, codebook_loss, quant_stats = self.quantize(x)
422
+ x = self.generator(quant)
423
+ return x, codebook_loss, quant_stats
424
+
425
+
426
+
427
+ # patch based discriminator
428
+ class VQGANDiscriminator(nn.Module):
429
+ def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None):
430
+ super().__init__()
431
+
432
+ layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)]
433
+ ndf_mult = 1
434
+ ndf_mult_prev = 1
435
+ for n in range(1, n_layers): # gradually increase the number of filters
436
+ ndf_mult_prev = ndf_mult
437
+ ndf_mult = min(2 ** n, 8)
438
+ layers += [
439
+ nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False),
440
+ nn.BatchNorm2d(ndf * ndf_mult),
441
+ nn.LeakyReLU(0.2, True)
442
+ ]
443
+
444
+ ndf_mult_prev = ndf_mult
445
+ ndf_mult = min(2 ** n_layers, 8)
446
+
447
+ layers += [
448
+ nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False),
449
+ nn.BatchNorm2d(ndf * ndf_mult),
450
+ nn.LeakyReLU(0.2, True)
451
+ ]
452
+
453
+ layers += [
454
+ nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map
455
+ self.main = nn.Sequential(*layers)
456
+
457
+ if model_path is not None:
458
+ chkpt = torch.load(model_path, map_location='cpu')
459
+ if 'params_d' in chkpt:
460
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d'])
461
+ elif 'params' in chkpt:
462
+ self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
463
+ else:
464
+ raise ValueError(f'Wrong params!')
465
+
466
+ def forward(self, x):
467
+ return self.main(x)
playground.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision.transforms.functional import normalize
3
+
4
+ from models import CodeFormer
5
+ from utils import imwrite, img2tensor, tensor2img
6
+ from facelib.utils.face_restoration_helper import FaceRestoreHelper
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ REPO_ID = "leonelhs/gfpgan"
10
+
11
+ pretrain_model_path = hf_hub_download(repo_id=REPO_ID, filename="CodeFormer.pth")
12
+
13
+ if __name__ == '__main__':
14
+
15
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
16
+
17
+ net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
18
+ connect_list=['32', '64', '128', '256']).to(device)
19
+
20
+ checkpoint = torch.load(pretrain_model_path)['params_ema']
21
+ net.load_state_dict(checkpoint)
22
+ net.eval()
23
+
24
+
25
+ face_helper = FaceRestoreHelper(
26
+ upscale_factor=2,
27
+ face_size=512,
28
+ crop_ratio=(1, 1),
29
+ det_model='retinaface_resnet50',
30
+ save_ext='png',
31
+ use_parse=True,
32
+ device=device)
33
+
34
+ input_img_list = ["/home/leonel/Pictures/lowres13.jpg"]
35
+
36
+ # -------------------- start to processing ---------------------
37
+ for i, img_path in enumerate(input_img_list):
38
+ # clean all the intermediate results to process the next image
39
+ face_helper.clean_all()
40
+ img = img_path
41
+
42
+ face_helper.read_image(img)
43
+ # get face landmarks for each face
44
+ num_det_faces = face_helper.get_face_landmarks_5(
45
+ only_center_face=False, resize=640, eye_dist_threshold=5)
46
+ print(f'\tdetect {num_det_faces} faces')
47
+ # align and warp each face
48
+ face_helper.align_warp_face()
49
+
50
+ # face restoration for each cropped face
51
+ for idx, cropped_face in enumerate(face_helper.cropped_faces):
52
+ # prepare data
53
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
54
+ normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
55
+ cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
56
+
57
+ try:
58
+ with torch.no_grad():
59
+ output = net(cropped_face_t, w=0.5, adain=True)[0]
60
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
61
+ del output
62
+ torch.cuda.empty_cache()
63
+ except Exception as error:
64
+ print(f'\tFailed inference for CodeFormer: {error}')
65
+ restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
66
+
67
+ restored_face = restored_face.astype('uint8')
68
+ face_helper.add_restored_face(restored_face, cropped_face)
69
+
70
+ # paste_back
71
+ has_aligned = False
72
+ suffix = None
73
+ if not has_aligned:
74
+ bg_img = None
75
+ face_helper.get_inverse_affine(None)
76
+ restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=False)
77
+ imwrite(restored_img, "pretty.png")
78
+
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch==2.8.0
2
+ numpy~=2.2.6
3
+ torchvision==0.23.0
4
+ opencv-python~=4.12.0.88
utils/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from .img_util import crop_border, imfrombytes, img2tensor, imwrite, tensor2img
2
+
3
+ __all__ = [
4
+ 'img2tensor',
5
+ 'tensor2img',
6
+ 'imwrite',
7
+ 'crop_border',
8
+ ]
utils/img_util.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import torch
6
+ from torchvision.utils import make_grid
7
+
8
+
9
+ def img2tensor(imgs, bgr2rgb=True, float32=True):
10
+ """Numpy array to tensor.
11
+
12
+ Args:
13
+ imgs (list[ndarray] | ndarray): Input images.
14
+ bgr2rgb (bool): Whether to change bgr to rgb.
15
+ float32 (bool): Whether to change to float32.
16
+
17
+ Returns:
18
+ list[tensor] | tensor: Tensor images. If returned results only have
19
+ one element, just return tensor.
20
+ """
21
+
22
+ def _totensor(img, bgr2rgb, float32):
23
+ if img.shape[2] == 3 and bgr2rgb:
24
+ if img.dtype == 'float64':
25
+ img = img.astype('float32')
26
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
27
+ img = torch.from_numpy(img.transpose(2, 0, 1))
28
+ if float32:
29
+ img = img.float()
30
+ return img
31
+
32
+ if isinstance(imgs, list):
33
+ return [_totensor(img, bgr2rgb, float32) for img in imgs]
34
+ else:
35
+ return _totensor(imgs, bgr2rgb, float32)
36
+
37
+
38
+ def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
39
+ """Convert torch Tensors into image numpy arrays.
40
+
41
+ After clamping to [min, max], values will be normalized to [0, 1].
42
+
43
+ Args:
44
+ tensor (Tensor or list[Tensor]): Accept shapes:
45
+ 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
46
+ 2) 3D Tensor of shape (3/1 x H x W);
47
+ 3) 2D Tensor of shape (H x W).
48
+ Tensor channel should be in RGB order.
49
+ rgb2bgr (bool): Whether to change rgb to bgr.
50
+ out_type (numpy type): output types. If ``np.uint8``, transform outputs
51
+ to uint8 type with range [0, 255]; otherwise, float type with
52
+ range [0, 1]. Default: ``np.uint8``.
53
+ min_max (tuple[int]): min and max values for clamp.
54
+
55
+ Returns:
56
+ (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
57
+ shape (H x W). The channel order is BGR.
58
+ """
59
+ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
60
+ raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
61
+
62
+ if torch.is_tensor(tensor):
63
+ tensor = [tensor]
64
+ result = []
65
+ for _tensor in tensor:
66
+ _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
67
+ _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
68
+
69
+ n_dim = _tensor.dim()
70
+ if n_dim == 4:
71
+ img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
72
+ img_np = img_np.transpose(1, 2, 0)
73
+ if rgb2bgr:
74
+ img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
75
+ elif n_dim == 3:
76
+ img_np = _tensor.numpy()
77
+ img_np = img_np.transpose(1, 2, 0)
78
+ if img_np.shape[2] == 1: # gray image
79
+ img_np = np.squeeze(img_np, axis=2)
80
+ else:
81
+ if rgb2bgr:
82
+ img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
83
+ elif n_dim == 2:
84
+ img_np = _tensor.numpy()
85
+ else:
86
+ raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}')
87
+ if out_type == np.uint8:
88
+ # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
89
+ img_np = (img_np * 255.0).round()
90
+ img_np = img_np.astype(out_type)
91
+ result.append(img_np)
92
+ if len(result) == 1:
93
+ result = result[0]
94
+ return result
95
+
96
+
97
+ def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
98
+ """This implementation is slightly faster than tensor2img.
99
+ It now only supports torch tensor with shape (1, c, h, w).
100
+
101
+ Args:
102
+ tensor (Tensor): Now only support torch tensor with (1, c, h, w).
103
+ rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
104
+ min_max (tuple[int]): min and max values for clamp.
105
+ """
106
+ output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
107
+ output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
108
+ output = output.type(torch.uint8).cpu().numpy()
109
+ if rgb2bgr:
110
+ output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
111
+ return output
112
+
113
+
114
+ def imfrombytes(content, flag='color', float32=False):
115
+ """Read an image from bytes.
116
+
117
+ Args:
118
+ content (bytes): Image bytes got from files or other streams.
119
+ flag (str): Flags specifying the color type of a loaded image,
120
+ candidates are `color`, `grayscale` and `unchanged`.
121
+ float32 (bool): Whether to change to float32., If True, will also norm
122
+ to [0, 1]. Default: False.
123
+
124
+ Returns:
125
+ ndarray: Loaded image array.
126
+ """
127
+ img_np = np.frombuffer(content, np.uint8)
128
+ imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
129
+ img = cv2.imdecode(img_np, imread_flags[flag])
130
+ if float32:
131
+ img = img.astype(np.float32) / 255.
132
+ return img
133
+
134
+
135
+ def imwrite(img, file_path, params=None, auto_mkdir=True):
136
+ """Write image to file.
137
+
138
+ Args:
139
+ img (ndarray): Image array to be written.
140
+ file_path (str): Image file path.
141
+ params (None or list): Same as opencv's :func:`imwrite` interface.
142
+ auto_mkdir (bool): If the parent folder of `file_path` does not exist,
143
+ whether to create it automatically.
144
+
145
+ Returns:
146
+ bool: Successful or not.
147
+ """
148
+ if auto_mkdir:
149
+ dir_name = os.path.abspath(os.path.dirname(file_path))
150
+ os.makedirs(dir_name, exist_ok=True)
151
+ return cv2.imwrite(file_path, img, params)
152
+
153
+
154
+ def crop_border(imgs, crop_border):
155
+ """Crop borders of images.
156
+
157
+ Args:
158
+ imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
159
+ crop_border (int): Crop border for each end of height and weight.
160
+
161
+ Returns:
162
+ list[ndarray]: Cropped images.
163
+ """
164
+ if crop_border == 0:
165
+ return imgs
166
+ else:
167
+ if isinstance(imgs, list):
168
+ return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
169
+ else:
170
+ return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]