Spaces:
Running
Running
Shivam Mehta
commited on
Commit
·
23f59c4
1
Parent(s):
2f40390
Adding multispeaker support for huggingface space
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from pathlib import Path
|
|
| 5 |
import gradio as gr
|
| 6 |
import soundfile as sf
|
| 7 |
import torch
|
| 8 |
-
from matcha.cli import (MATCHA_URLS,
|
| 9 |
get_device, load_matcha, load_vocoder, process_text,
|
| 10 |
to_waveform)
|
| 11 |
from matcha.utils.utils import get_user_data_dir, plot_tensor
|
|
@@ -16,18 +16,57 @@ args = Namespace(
|
|
| 16 |
cpu=False,
|
| 17 |
model="matcha_ljspeech",
|
| 18 |
vocoder="hifigan_T2_v1",
|
| 19 |
-
spk=
|
| 20 |
)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
device = get_device(args)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
@torch.inference_mode()
|
|
@@ -37,173 +76,246 @@ def process_text_gradio(text):
|
|
| 37 |
|
| 38 |
|
| 39 |
@torch.inference_mode()
|
| 40 |
-
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 51 |
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
|
| 52 |
|
| 53 |
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
| 54 |
|
| 55 |
|
| 56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
phones, text, text_lengths = process_text_gradio(text)
|
| 58 |
-
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
| 59 |
return phones, audio, mel_spectrogram
|
| 60 |
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
| 66 |
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
Note: Synthesis speed may be slower than in our paper due to I/O latency and because this instance runs on CPUs.
|
| 80 |
-
"""
|
| 81 |
-
|
| 82 |
-
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
|
| 83 |
-
processed_text = gr.State(value=None)
|
| 84 |
-
processed_text_len = gr.State(value=None)
|
| 85 |
-
|
| 86 |
-
with gr.Box():
|
| 87 |
-
with gr.Row():
|
| 88 |
-
gr.Markdown(description, scale=3)
|
| 89 |
-
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
| 90 |
-
|
| 91 |
-
with gr.Box():
|
| 92 |
-
with gr.Row():
|
| 93 |
-
gr.Markdown("# Text Input")
|
| 94 |
-
with gr.Row():
|
| 95 |
-
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
| 96 |
-
|
| 97 |
-
with gr.Row():
|
| 98 |
-
gr.Markdown("### Hyper parameters")
|
| 99 |
-
with gr.Row():
|
| 100 |
-
n_timesteps = gr.Slider(
|
| 101 |
-
label="Number of ODE steps",
|
| 102 |
-
minimum=1,
|
| 103 |
-
maximum=100,
|
| 104 |
-
step=1,
|
| 105 |
-
value=10,
|
| 106 |
-
interactive=True,
|
| 107 |
-
)
|
| 108 |
-
length_scale = gr.Slider(
|
| 109 |
-
label="Length scale (Speaking rate)",
|
| 110 |
-
minimum=0.5,
|
| 111 |
-
maximum=1.5,
|
| 112 |
-
step=0.05,
|
| 113 |
-
value=1.0,
|
| 114 |
-
interactive=True,
|
| 115 |
-
)
|
| 116 |
-
mel_temp = gr.Slider(
|
| 117 |
-
label="Sampling temperature",
|
| 118 |
-
minimum=0.00,
|
| 119 |
-
maximum=2.001,
|
| 120 |
-
step=0.16675,
|
| 121 |
-
value=0.667,
|
| 122 |
-
interactive=True,
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
synth_btn = gr.Button("Synthesise")
|
| 126 |
-
|
| 127 |
-
with gr.Box():
|
| 128 |
-
with gr.Row():
|
| 129 |
-
gr.Markdown("### Phonetised text")
|
| 130 |
-
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
|
| 131 |
-
|
| 132 |
-
with gr.Box():
|
| 133 |
-
with gr.Row():
|
| 134 |
-
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
|
| 135 |
-
|
| 136 |
-
# with gr.Row():
|
| 137 |
-
audio = gr.Audio(interactive=False, label="Audio")
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
with gr.Row():
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 156 |
-
4,
|
| 157 |
-
0.677,
|
| 158 |
-
1.0,
|
| 159 |
-
],
|
| 160 |
-
[
|
| 161 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 162 |
-
10,
|
| 163 |
-
0.677,
|
| 164 |
-
1.0,
|
| 165 |
-
],
|
| 166 |
-
[
|
| 167 |
-
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 168 |
-
50,
|
| 169 |
-
0.677,
|
| 170 |
-
1.0,
|
| 171 |
-
],
|
| 172 |
-
[
|
| 173 |
-
"The narrative of these events is based largely on the recollections of the participants.",
|
| 174 |
-
10,
|
| 175 |
-
0.677,
|
| 176 |
-
1.0,
|
| 177 |
-
],
|
| 178 |
-
[
|
| 179 |
-
"The jury did not believe him, and the verdict was for the defendants.",
|
| 180 |
-
10,
|
| 181 |
-
0.677,
|
| 182 |
-
1.0,
|
| 183 |
-
],
|
| 184 |
-
],
|
| 185 |
-
fn=run_full_synthesis,
|
| 186 |
-
inputs=[text, n_timesteps, mel_temp, length_scale],
|
| 187 |
-
outputs=[phonetised_text, audio, mel_spectrogram],
|
| 188 |
-
cache_examples=True,
|
| 189 |
)
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
],
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
| 202 |
-
outputs=[audio, mel_spectrogram],
|
| 203 |
)
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
main()
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import soundfile as sf
|
| 7 |
import torch
|
| 8 |
+
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded,
|
| 9 |
get_device, load_matcha, load_vocoder, process_text,
|
| 10 |
to_waveform)
|
| 11 |
from matcha.utils.utils import get_user_data_dir, plot_tensor
|
|
|
|
| 16 |
cpu=False,
|
| 17 |
model="matcha_ljspeech",
|
| 18 |
vocoder="hifigan_T2_v1",
|
| 19 |
+
spk=0,
|
| 20 |
)
|
| 21 |
|
| 22 |
+
|
| 23 |
+
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
|
| 24 |
+
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
|
| 25 |
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
| 26 |
+
RADIO_OPTIONS = {
|
| 27 |
+
"Multi Speaker (VCTK)": {
|
| 28 |
+
"model": "matcha_vctk",
|
| 29 |
+
"vocoder": "hifigan_univ_v1",
|
| 30 |
+
},
|
| 31 |
+
"Single Speaker (LJ Speech)": {
|
| 32 |
+
"model": "matcha_ljspeech",
|
| 33 |
+
"vocoder": "hifigan_T2_v1",
|
| 34 |
+
},
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# Ensure all the required models are downloaded
|
| 38 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
| 39 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
| 40 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
| 41 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
| 42 |
+
|
| 43 |
+
# get device
|
| 44 |
device = get_device(args)
|
| 45 |
|
| 46 |
+
# Load default models
|
| 47 |
+
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
| 48 |
+
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
| 49 |
+
|
| 50 |
+
matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device)
|
| 51 |
+
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_model_ui(model_type, textbox):
|
| 56 |
+
model_name = RADIO_OPTIONS[model_type]["model"]
|
| 57 |
+
|
| 58 |
+
if model_name == "matcha_ljspeech":
|
| 59 |
+
spk_slider = gr.update(visible=False, value=-1)
|
| 60 |
+
single_speaker_examples = gr.update(visible=True)
|
| 61 |
+
multi_speaker_examples = gr.update(visible=False)
|
| 62 |
+
length_scale = gr.update(value=0.95)
|
| 63 |
+
else:
|
| 64 |
+
spk_slider = gr.update(visible=True, value=0)
|
| 65 |
+
single_speaker_examples = gr.update(visible=False)
|
| 66 |
+
multi_speaker_examples = gr.update(visible=True)
|
| 67 |
+
length_scale = gr.update(value=0.85)
|
| 68 |
+
|
| 69 |
+
return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale
|
| 70 |
|
| 71 |
|
| 72 |
@torch.inference_mode()
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
@torch.inference_mode()
|
| 79 |
+
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
| 80 |
+
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
| 81 |
+
|
| 82 |
+
if spk is None:
|
| 83 |
+
output = matcha_ljspeech.synthesise(
|
| 84 |
+
text,
|
| 85 |
+
text_length,
|
| 86 |
+
n_timesteps=n_timesteps,
|
| 87 |
+
temperature=temperature,
|
| 88 |
+
spks=None,
|
| 89 |
+
length_scale=length_scale,
|
| 90 |
+
)
|
| 91 |
+
output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser)
|
| 92 |
+
else:
|
| 93 |
+
output = matcha_vctk.synthesise(
|
| 94 |
+
text,
|
| 95 |
+
text_length,
|
| 96 |
+
n_timesteps=n_timesteps,
|
| 97 |
+
temperature=temperature,
|
| 98 |
+
spks=spk,
|
| 99 |
+
length_scale=length_scale,
|
| 100 |
+
)
|
| 101 |
+
output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser)
|
| 102 |
+
|
| 103 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
| 104 |
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
|
| 105 |
|
| 106 |
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
| 107 |
|
| 108 |
|
| 109 |
+
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
| 110 |
+
phones, text, text_lengths = process_text_gradio(text)
|
| 111 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
| 112 |
+
return phones, audio, mel_spectrogram
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
| 116 |
phones, text, text_lengths = process_text_gradio(text)
|
| 117 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
| 118 |
return phones, audio, mel_spectrogram
|
| 119 |
|
| 120 |
|
| 121 |
+
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
|
| 122 |
+
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
|
| 123 |
+
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
|
|
|
| 124 |
|
| 125 |
|
| 126 |
+
* Is probabilistic
|
| 127 |
+
* Has compact memory footprint
|
| 128 |
+
* Sounds highly natural
|
| 129 |
+
* Is very fast to synthesise from
|
| 130 |
|
| 131 |
|
| 132 |
+
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
| 133 |
+
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
|
| 134 |
|
| 135 |
+
Cached examples are available at the bottom of the page.
|
| 136 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
|
| 139 |
+
processed_text = gr.State(value=None)
|
| 140 |
+
processed_text_len = gr.State(value=None)
|
| 141 |
+
|
| 142 |
+
with gr.Box():
|
| 143 |
with gr.Row():
|
| 144 |
+
gr.Markdown(description, scale=3)
|
| 145 |
+
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
| 146 |
+
|
| 147 |
+
with gr.Box():
|
| 148 |
+
radio_options = list(RADIO_OPTIONS.keys())
|
| 149 |
+
model_type = gr.Radio(
|
| 150 |
+
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
gr.Markdown("# Text Input")
|
| 155 |
+
with gr.Row():
|
| 156 |
+
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
| 157 |
+
spk_slider = gr.Slider(
|
| 158 |
+
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
)
|
| 160 |
|
| 161 |
+
with gr.Row():
|
| 162 |
+
gr.Markdown("### Hyper parameters")
|
| 163 |
+
with gr.Row():
|
| 164 |
+
n_timesteps = gr.Slider(
|
| 165 |
+
label="Number of ODE steps",
|
| 166 |
+
minimum=1,
|
| 167 |
+
maximum=100,
|
| 168 |
+
step=1,
|
| 169 |
+
value=10,
|
| 170 |
+
interactive=True,
|
| 171 |
+
)
|
| 172 |
+
length_scale = gr.Slider(
|
| 173 |
+
label="Length scale (Speaking rate)",
|
| 174 |
+
minimum=0.5,
|
| 175 |
+
maximum=1.5,
|
| 176 |
+
step=0.05,
|
| 177 |
+
value=1.0,
|
| 178 |
+
interactive=True,
|
| 179 |
+
)
|
| 180 |
+
mel_temp = gr.Slider(
|
| 181 |
+
label="Sampling temperature",
|
| 182 |
+
minimum=0.00,
|
| 183 |
+
maximum=2.001,
|
| 184 |
+
step=0.16675,
|
| 185 |
+
value=0.667,
|
| 186 |
+
interactive=True,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
synth_btn = gr.Button("Synthesise")
|
| 190 |
+
|
| 191 |
+
with gr.Box():
|
| 192 |
+
with gr.Row():
|
| 193 |
+
gr.Markdown("### Phonetised text")
|
| 194 |
+
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
|
| 195 |
+
|
| 196 |
+
with gr.Box():
|
| 197 |
+
with gr.Row():
|
| 198 |
+
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
|
| 199 |
+
|
| 200 |
+
# with gr.Row():
|
| 201 |
+
audio = gr.Audio(interactive=False, label="Audio")
|
| 202 |
+
|
| 203 |
+
with gr.Row(visible=False) as example_row_lj_speech:
|
| 204 |
+
examples = gr.Examples( # pylint: disable=unused-variable
|
| 205 |
+
examples=[
|
| 206 |
+
[
|
| 207 |
+
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
| 208 |
+
50,
|
| 209 |
+
0.677,
|
| 210 |
+
0.95,
|
| 211 |
+
],
|
| 212 |
+
[
|
| 213 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 214 |
+
2,
|
| 215 |
+
0.677,
|
| 216 |
+
0.95,
|
| 217 |
+
],
|
| 218 |
+
[
|
| 219 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 220 |
+
4,
|
| 221 |
+
0.677,
|
| 222 |
+
0.95,
|
| 223 |
+
],
|
| 224 |
+
[
|
| 225 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 226 |
+
10,
|
| 227 |
+
0.677,
|
| 228 |
+
0.95,
|
| 229 |
+
],
|
| 230 |
+
[
|
| 231 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
| 232 |
+
50,
|
| 233 |
+
0.677,
|
| 234 |
+
0.95,
|
| 235 |
+
],
|
| 236 |
+
[
|
| 237 |
+
"The narrative of these events is based largely on the recollections of the participants.",
|
| 238 |
+
10,
|
| 239 |
+
0.677,
|
| 240 |
+
0.95,
|
| 241 |
+
],
|
| 242 |
+
[
|
| 243 |
+
"The jury did not believe him, and the verdict was for the defendants.",
|
| 244 |
+
10,
|
| 245 |
+
0.677,
|
| 246 |
+
0.95,
|
| 247 |
+
],
|
| 248 |
+
],
|
| 249 |
+
fn=ljspeech_example_cacher,
|
| 250 |
+
inputs=[text, n_timesteps, mel_temp, length_scale],
|
| 251 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
| 252 |
+
cache_examples=True,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
with gr.Row() as example_row_multispeaker:
|
| 256 |
+
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
| 257 |
+
examples=[
|
| 258 |
+
[
|
| 259 |
+
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
| 260 |
+
10,
|
| 261 |
+
0.677,
|
| 262 |
+
0.85,
|
| 263 |
+
0,
|
| 264 |
+
],
|
| 265 |
+
[
|
| 266 |
+
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
| 267 |
+
10,
|
| 268 |
+
0.677,
|
| 269 |
+
0.85,
|
| 270 |
+
16,
|
| 271 |
+
],
|
| 272 |
+
[
|
| 273 |
+
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
| 274 |
+
50,
|
| 275 |
+
0.677,
|
| 276 |
+
0.85,
|
| 277 |
+
44,
|
| 278 |
+
],
|
| 279 |
+
[
|
| 280 |
+
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
| 281 |
+
50,
|
| 282 |
+
0.677,
|
| 283 |
+
0.85,
|
| 284 |
+
45,
|
| 285 |
+
],
|
| 286 |
+
[
|
| 287 |
+
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
| 288 |
+
4,
|
| 289 |
+
0.677,
|
| 290 |
+
0.85,
|
| 291 |
+
58,
|
| 292 |
+
],
|
| 293 |
],
|
| 294 |
+
fn=multispeaker_example_cacher,
|
| 295 |
+
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
| 296 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
| 297 |
+
cache_examples=True,
|
| 298 |
+
label="Multi Speaker Examples",
|
|
|
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
+
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
| 302 |
+
load_model_ui,
|
| 303 |
+
inputs=[model_type, text],
|
| 304 |
+
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
| 305 |
+
)
|
| 306 |
|
| 307 |
+
synth_btn.click(
|
| 308 |
+
fn=process_text_gradio,
|
| 309 |
+
inputs=[
|
| 310 |
+
text,
|
| 311 |
+
],
|
| 312 |
+
outputs=[phonetised_text, processed_text, processed_text_len],
|
| 313 |
+
api_name="matcha_tts",
|
| 314 |
+
queue=True,
|
| 315 |
+
).then(
|
| 316 |
+
fn=synthesise_mel,
|
| 317 |
+
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
| 318 |
+
outputs=[audio, mel_spectrogram],
|
| 319 |
+
)
|
| 320 |
|
| 321 |
+
demo.queue(concurrency_count=5).launch(debug=True)
|
|
|