# NEW-ASR-VOXLINGUA # ============================================================================== # Cell 1: Environment Setup & Dependencies # # CORRECTED: Forcing SpeechBrain to version 0.5.16 to ensure backward # compatibility with the old TalTechNLP XLS-R model. # ============================================================================== print("CELL 1: Setting up the environment with specific SpeechBrain version...") # --- CORE CORRECTION --- # Uninstall any existing newer versions and install the last stable version (0.5.x) # that is compatible with the old TalTechNLP model's file paths. # --- END CORRECTION --- import torch print("\n--- System Check ---") if torch.cuda.is_available(): print(f"✅ GPU found: {torch.cuda.get_device_name(0)}") print(f" CUDA Version: {torch.version.cuda}") else: print("⚠️ GPU not found. Using CPU. This will be significantly slower.") print("--- End System Check ---\n") pip show speechbrain.inference print("CELL 2: Importing libraries and setting up language maps...") import os import re import gc import glob import numpy as np import pandas as pd import librosa import soundfile as sf import torchaudio from datetime import datetime from google.colab import files import subprocess import shutil # Transformers and ML libraries from transformers import AutoModel, Wav2Vec2Processor, Wav2Vec2ForCTC from speechbrain.inference.classifiers import EncoderClassifier from speechbrain.pretrained.interfaces import foreign_class from tokenizers import Tokenizer, models, trainers, pre_tokenizers import warnings warnings.filterwarnings('ignore') # Complete language mappings as sets for O(1) lookup INDO_ARYAN_LANGS = {'hi', 'bn', 'mr', 'gu', 'pa', 'or', 'as', 'ur', 'ks', 'sd', 'ne', 'kok'} DRAVIDIAN_LANGS = {'ta', 'te', 'kn', 'ml'} LOW_RESOURCE_LANGS = {'brx', 'mni', 'sat', 'doi'} # Research-verified cross-lingual transfer mapping TRANSFER_MAPPING = {'brx': 'hi', 'sat': 'hi', 'doi': 'pa', 'mni': 'bn'} ALL_SUPPORTED_LANGS = INDO_ARYAN_LANGS | DRAVIDIAN_LANGS | LOW_RESOURCE_LANGS print(f"✅ Libraries imported successfully.") print(f"📊 Total languages supported: {len(ALL_SUPPORTED_LANGS)}\n") print("CELL 3: Defining audio preprocessing functions...") SUPPORTED_FORMATS = {'.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'} def validate_audio_format(audio_path): ext = os.path.splitext(audio_path)[1].lower() if not ext in SUPPORTED_FORMATS: raise ValueError(f"Unsupported audio format: {ext}. Supported: {SUPPORTED_FORMATS}") return True def preprocess_audio(audio_path, target_sr=16000): validate_audio_format(audio_path) try: waveform, sr = torchaudio.load(audio_path) except Exception: waveform, sr = librosa.load(audio_path, sr=None) waveform = torch.tensor(waveform).unsqueeze(0) if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) if sr != target_sr: resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr) waveform = resampler(waveform) return waveform, target_sr print("✅ Audio preprocessing functions ready.\n") print("CELL 4: Defining file handling functions...") def extract_file_id_from_link(share_link): patterns = [r'/file/d/([a-zA-Z0-9-_]+)', r'/folders/([a-zA-Z0-9-_]+)', r'id=([a-zA-Z0-9-_]+)'] for pattern in patterns: match = re.search(pattern, share_link) if match: return match.group(1) return None def download_from_shared_drive(share_link, max_files_per_lang=20): file_id = extract_file_id_from_link(share_link) if not file_id: print("❌ Could not extract file ID. Please check your sharing link.") return [] download_dir = "/content/shared_dataset" if os.path.exists(download_dir): shutil.rmtree(download_dir) os.makedirs(download_dir, exist_ok=True) print(f"✅ Extracted ID: {file_id}. Starting download...") try: import gdown gdown.download_folder(f"https://drive.google.com/drive/folders/{file_id}", output=download_dir, quiet=False, use_cookies=False) print("✅ Folder downloaded successfully.") except Exception as e: print(f"❌ Download failed: {e}") print("💡 Please ensure the folder is shared with 'Anyone with the link can view'.") return [] print("\n🔍 Scanning for audio files...") all_audio_files = [p for ext in SUPPORTED_FORMATS for p in glob.glob(os.path.join(download_dir, '**', f'*{ext}'), recursive=True)] print(f"📊 Found {len(all_audio_files)} total audio files.") lang_folders = {d: [] for d in os.listdir(download_dir) if os.path.isdir(os.path.join(download_dir, d))} for f in all_audio_files: lang_code = os.path.basename(os.path.dirname(f)) if lang_code in lang_folders: lang_folders[lang_code].append(f) final_file_list = [] print("\nLimiting files per language:") for lang, files in lang_folders.items(): if len(files) > max_files_per_lang: print(f" {lang}: Limiting to {max_files_per_lang} files (from {len(files)})") final_file_list.extend(files[:max_files_per_lang]) else: print(f" {lang}: Found {len(files)} files") final_file_list.extend(files) return final_file_list def get_audio_files(): print("\n🎯 Choose your audio source:") print("1. Upload files from computer") print("2. Download from Google Drive sharing link") choice = input("Enter choice (1/2): ").strip() if choice == '1': uploaded = files.upload() return [f"/content/{fname}" for fname in uploaded.keys()] elif choice == '2': share_link = input("\nPaste your Google Drive folder sharing link: ").strip() return download_from_shared_drive(share_link) else: print("Invalid choice.") return [] print("✅ File handling functions ready.\n") print("CELL 5: Loading Language Identification (LID) Models...") voxlingua_model = None xlsr_lid_model = None try: print("Loading VoxLingua107 ECAPA-TDNN...") voxlingua_model = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa", savedir="pretrained_models/voxlingua107") print("✅ VoxLingua107 loaded.") except Exception as e: print(f"❌ VoxLingua107 error: {e}") try: print("\nLoading TalTechNLP XLS-R LID...") xlsr_lid_model = foreign_class(source="TalTechNLP/voxlingua107-xls-r-300m-wav2vec", pymodule_file="encoder_wav2vec_classifier.py", classname="EncoderWav2vecClassifier", hparams_file="inference_wav2vec.yaml", savedir="pretrained_models/xlsr_voxlingua") print("✅ TalTechNLP XLS-R loaded.") except Exception as e: print(f"❌ XLS-R error: {e}. Pipeline will proceed with primary LID model only.") models_loaded = sum(p is not None for p in [voxlingua_model, xlsr_lid_model]) print(f"\n📊 LID Models Status: {models_loaded}/2 loaded.\n") print("CELL 6: Defining hybrid language detection system...") def hybrid_language_detection(audio_path): waveform, sr = preprocess_audio(audio_path) results, confidences = {}, {} if voxlingua_model: try: pred = voxlingua_model.classify_file(audio_path) lang_code = str(pred[3][0]).split(':')[0].strip() confidence = float(pred[1].exp().item()) results['voxlingua'], confidences['voxlingua'] = lang_code, confidence except Exception: pass if xlsr_lid_model: try: out_prob, score, index, text_lab = xlsr_lid_model.classify_file(audio_path) lang_code = str(text_lab[0]).strip().lower() confidence = float(out_prob.exp().max().item()) results['xlsr'], confidences['xlsr'] = lang_code, confidence except Exception: pass if not results: return "unknown", 0.0 if len(results) == 2 and results['voxlingua'] == results['xlsr']: return results['voxlingua'], (confidences['voxlingua'] + confidences['xlsr']) / 2 best_model = max(confidences, key=confidences.get) return results[best_model], confidences[best_model] print("✅ Hybrid LID system ready.\n") print("CELL 7: Loading Automatic Speech Recognition (ASR) Models...") indicconformer_model = None indicwav2vec_processor = None indicwav2vec_model = None try: print("Loading IndicConformer for Indo-Aryan...") indicconformer_model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True) print("✅ IndicConformer loaded.") except Exception as e: print(f"❌ IndicConformer Error: {e}. Indo-Aryan transcription will be unavailable.") # Using a model fine-tuned on Tamil as a representative for Dravidian languages. dravidian_model_name = "Amrrs/wav2vec2-large-xlsr-53-tamil" try: print(f"\nLoading Fine-Tuned Wav2Vec2 for Dravidian ({dravidian_model_name})...") indicwav2vec_processor = Wav2Vec2Processor.from_pretrained(dravidian_model_name) indicwav2vec_model = Wav2Vec2ForCTC.from_pretrained(dravidian_model_name) print("✅ Fine-Tuned IndicWav2Vec2 loaded.") except Exception as e: print(f"❌ IndicWav2Vec2 Error: {e}. Dravidian transcription will be unavailable.") asr_models_loaded = sum(p is not None for p in [indicconformer_model, indicwav2vec_model]) print(f"\n📊 ASR Models Status: {asr_models_loaded}/2 loaded.\n") # ============================================================================== # Cell 8: BPE and Syllable-BPE Tokenization Classes # # This version correctly handles untrained tokenizers and has improved # regex for more accurate syllable segmentation. # ============================================================================== print("CELL 8: Defining tokenization classes...") import re from tokenizers import Tokenizer, models, trainers, pre_tokenizers class BPETokenizer: """Standard BPE tokenizer for Indo-Aryan languages.""" def __init__(self, vocab_size=5000): self.tokenizer = Tokenizer(models.BPE()) self.tokenizer.pre_tokenizer = pre_tokenizers.Whitespace() self.trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["", ""]) self.trained = False def train(self, texts): """Train BPE tokenizer on a text corpus.""" self.tokenizer.train_from_iterator(texts, self.trainer) self.trained = True def encode(self, text): """Encode text using the trained BPE model.""" if not self.trained: # Fallback for untrained tokenizer return text.split() return self.tokenizer.encode(text).tokens class SyllableBPETokenizer: """Syllable-aware BPE tokenizer for Dravidian languages.""" def __init__(self, vocab_size=3000): self.vocab_size = vocab_size self.patterns = { 'ta': r'[க-ஹ][ா-ௌ]?|[அ-ஔ]', # Tamil 'te': r'[క-హ][ా-ౌ]?|[అ-ఔ]', # Telugu 'kn': r'[ಕ-ಹ][ಾ-ೌ]?|[ಅ-ಔ]', # Kannada 'ml': r'[ക-ഹ][ാ-ൌ]?|[അ-ഔ]' # Malayalam } self.trained = False def syllable_segment(self, text, lang): """Segment text into phonetically relevant syllables.""" pattern = self.patterns.get(lang, r'\S+') # Fallback to whitespace for other languages syllables = re.findall(pattern, text) return syllables if syllables else [text] def train_sbpe(self, texts, lang): """Train the S-BPE tokenizer on syllable-segmented text.""" syllable_texts = [' '.join(self.syllable_segment(t, lang)) for t in texts] self.tokenizer = Tokenizer(models.BPE()) trainer = trainers.BpeTrainer(vocab_size=self.vocab_size, special_tokens=["", ""]) self.tokenizer.train_from_iterator(syllable_texts, trainer) self.trained = True def encode(self, text, lang): """Encode text using the trained syllable-aware BPE.""" syllables = self.syllable_segment(text, lang) if not self.trained: # If not trained, return the basic syllables as a fallback return syllables syllable_text = ' '.join(syllables) return self.tokenizer.encode(syllable_text).tokens print("✅ BPE and S-BPE tokenization classes implemented and verified.\n") # --- Example Usage (Demonstration) --- print("--- Tokenizer Demonstration ---") # BPE Example bpe_texts = ["यह एक वाक्य है।", "এটি একটি বাক্য।"] bpe_tokenizer = BPETokenizer(vocab_size=50) bpe_tokenizer.train(bpe_texts) print(f"BPE Tokens: {bpe_tokenizer.encode('यह दूसरा वाक्य है।')}") # S-BPE Example sbpe_texts = ["வணக்கம் உலகம்", "மொழி ஆய்வு"] sbpe_tokenizer = SyllableBPETokenizer(vocab_size=30) sbpe_tokenizer.train_sbpe(sbpe_texts, 'ta') print(f"S-BPE Tokens (Tamil): {sbpe_tokenizer.encode('வணக்கம் நண்பரே', 'ta')}") print("--- End Demonstration ---\n") # ============================================================================== # Cell 9: Complete SLP1 Phonetic Encoder # # This version includes a comprehensive mapping for all target Dravidian # languages and a reverse mapping for decoding. # ============================================================================== print("CELL 9: Defining the SLP1 phonetic encoder...") class SLP1Encoder: """Encodes Dravidian scripts into a unified Sanskrit Library Phonetic (SLP1) representation.""" def __init__(self): # Comprehensive mapping covering Tamil, Telugu, Kannada, and Malayalam self.slp1_mapping = { # Vowels (Common and specific) 'அ': 'a', 'ஆ': 'A', 'இ': 'i', 'ஈ': 'I', 'உ': 'u', 'ஊ': 'U', 'எ': 'e', 'ஏ': 'E', 'ஐ': 'E', 'ஒ': 'o', 'ஓ': 'O', 'ஔ': 'O', 'అ': 'a', 'ఆ': 'A', 'ఇ': 'i', 'ఈ': 'I', 'ఉ': 'u', 'ఊ': 'U', 'ఋ': 'f', 'ౠ': 'F', 'ఎ': 'e', 'ఏ': 'E', 'ఐ': 'E', 'ఒ': 'o', 'ఓ': 'O', 'ఔ': 'O', 'ಅ': 'a', 'ಆ': 'A', 'ಇ': 'i', 'ಈ': 'I', 'ಉ': 'u', 'ಊ': 'U', 'ಋ': 'f', 'ಎ': 'e', 'ಏ': 'E', 'ಐ': 'E', 'ಒ': 'o', 'ಓ': 'O', 'ಔ': 'O', 'അ': 'a', 'ആ': 'A', 'ഇ': 'i', 'ഈ': 'I', 'ഉ': 'u', 'ഊ': 'U', 'ഋ': 'f', 'എ': 'e', 'ഏ': 'E', 'ഐ': 'E', 'ഒ': 'o', 'ഓ': 'O', 'ഔ': 'O', # Consonants (Common and specific) 'க': 'k', 'ங': 'N', 'ச': 'c', 'ஞ': 'J', 'ட': 'w', 'ண': 'R', 'த': 't', 'ந': 'n', 'ப': 'p', 'ம': 'm', 'ய': 'y', 'ர': 'r', 'ல': 'l', 'வ': 'v', 'ழ': 'L', 'ள': 'x', 'ற': 'f', 'ன': 'F', 'క': 'k', 'ఖ': 'K', 'గ': 'g', 'ఘ': 'G', 'ఙ': 'N', 'చ': 'c', 'ఛ': 'C', 'జ': 'j', 'ఝ': 'J', 'ఞ': 'Y', 'ట': 'w', 'ఠ': 'W', 'డ': 'q', 'ఢ': 'Q', 'ణ': 'R', 'త': 't', 'థ': 'T', 'ద': 'd', 'ధ': 'D', 'న': 'n', 'ప': 'p', 'ఫ': 'P', 'బ': 'b', 'భ': 'B', 'మ': 'm', 'య': 'y', 'ర': 'r', 'ల': 'l', 'వ': 'v', 'శ': 'S', 'ష': 's', 'స': 'z', 'హ': 'h', 'ಕ': 'k', 'ಖ': 'K', 'ಗ': 'g', 'ಘ': 'G', 'ಙ': 'N', 'ಚ': 'c', 'ಛ': 'C', 'ಜ': 'j', 'ಝ': 'J', 'ಞ': 'Y', 'ಟ': 'w', 'ಠ': 'W', 'ಡ': 'q', 'ಢ': 'Q', 'ಣ': 'R', 'ತ': 't', 'ಥ': 'T', 'ದ': 'd', 'ಧ': 'D', 'ನ': 'n', 'ಪ': 'p', 'ಫ': 'P', 'ಬ': 'b', 'ಭ': 'B', 'ಮ': 'm', 'ಯ': 'y', 'ರ': 'r', 'ಲ': 'l', 'ವ': 'v', 'ಶ': 'S', 'ಷ': 's', 'ಸ': 'z', 'ಹ': 'h', 'ക': 'k', 'ഖ': 'K', 'ഗ': 'g', 'ഘ': 'G', 'ങ': 'N', 'ച': 'c', 'ഛ': 'C', 'ജ': 'j', 'ഝ': 'J', 'ഞ': 'Y', 'ട': 'w', 'ഠ': 'W', 'ഡ': 'q', 'ഢ': 'Q', 'ണ': 'R', 'ത': 't', 'ഥ': 'T', 'ദ': 'd', 'ധ': 'D', 'ന': 'n', 'പ': 'p', 'ഫ': 'P', 'ബ': 'b', 'ഭ': 'B', 'മ': 'm', 'യ': 'y', 'ര': 'r', 'ല': 'l', 'വ': 'v', 'ശ': 'S', 'ഷ': 's', 'സ': 'z', 'ഹ': 'h', # Grantha script consonants often used in Tamil and Malayalam 'ஜ': 'j', 'ஷ': 'S', 'ஸ': 's', 'ஹ': 'h', # Common diacritics '்': '', 'ಂ': 'M', 'ः': 'H', 'ം': 'M' } # Build reverse mapping for decoding, handling potential conflicts self.reverse_mapping = {v: k for k, v in self.slp1_mapping.items()} def encode(self, text): """Convert native Dravidian script to its SLP1 representation.""" if not text: return "" return "".join([self.slp1_mapping.get(char, char) for char in text]) def decode(self, slp1_text): """Convert SLP1 representation back to a native script (basic implementation).""" if not slp1_text: return "" return "".join([self.reverse_mapping.get(char, char) for char in slp1_text]) slp1_encoder = SLP1Encoder() print("✅ Complete SLP1 encoder ready.") print(f"🔤 Total character mappings: {len(slp1_encoder.slp1_mapping)}\n") # --- Example Usage (Demonstration) --- print("--- SLP1 Encoder Demonstration ---") test_cases = [ ("கல்வி", "Tamil"), ("విద్య", "Telugu"), ("ಶಿಕ್ಷಣ", "Kannada"), ("വിദ്യാഭ്യാസം", "Malayalam") ] for text, lang in test_cases: encoded = slp1_encoder.encode(text) print(f" {lang}: {text} → {encoded}") print("--- End Demonstration ---\n") print("CELL 10: Defining family-specific ASR processing functions...") def process_indo_aryan_asr(audio_path, detected_lang): if indicconformer_model is None: return "[IndicConformer model not loaded]" try: waveform, sr = preprocess_audio(audio_path) # The model expects language code and decoding strategy ("ctc" or "rnnt") transcription = indicconformer_model(waveform, detected_lang, "ctc")[0] return transcription except Exception as e: return f"Error in Indo-Aryan ASR: {e}" def process_dravidian_asr(audio_path, detected_lang): if not (indicwav2vec_model and indicwav2vec_processor): return "[Dravidian ASR model not loaded]", "" try: waveform, sr = preprocess_audio(audio_path) input_values = indicwav2vec_processor(waveform.squeeze().numpy(), sampling_rate=sr, return_tensors="pt").input_values with torch.no_grad(): logits = indicwav2vec_model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = indicwav2vec_processor.batch_decode(predicted_ids)[0] # S-BPE Tokenization for analysis sbpe_tokenizer = SyllableBPETokenizer() sbpe_tokenizer.train_sbpe([transcription], detected_lang) syllable_tokens = sbpe_tokenizer.encode(transcription, detected_lang) print(f" S-BPE Tokens (for analysis): {syllable_tokens}") slp1_encoded = slp1_encoder.encode(transcription) return transcription, slp1_encoded except Exception as e: return f"Error in Dravidian ASR: {e}", "" def process_low_resource_asr(audio_path, detected_lang): transfer_lang = TRANSFER_MAPPING.get(detected_lang, 'hi') print(f" Using transfer learning: {detected_lang} -> {transfer_lang}") return process_indo_aryan_asr(audio_path, transfer_lang) print("✅ Family-specific ASR functions ready.\n") print("CELL 11: Defining the main processing pipeline...") def complete_speech_to_text_pipeline(audio_path): print(f"\n🎵 Processing: {os.path.basename(audio_path)}") detected_lang, confidence = hybrid_language_detection(audio_path) slp1_text, family, transcription = "", "Unknown", f"Language '{detected_lang}' not supported." if detected_lang in INDO_ARYAN_LANGS: family, transcription = "Indo-Aryan", process_indo_aryan_asr(audio_path, detected_lang) elif detected_lang in DRAVIDIAN_LANGS: family, (transcription, slp1_text) = "Dravidian", process_dravidian_asr(audio_path, detected_lang) elif detected_lang in LOW_RESOURCE_LANGS: family, transcription = "Low-Resource", process_low_resource_asr(audio_path, detected_lang) status = "Failed" if "error" in transcription.lower() or "not supported" in transcription.lower() or not transcription else "Success" print(f" Transcription: {transcription}") return { 'audio_file': os.path.basename(audio_path), 'full_path': audio_path, 'detected_language': detected_lang, 'language_family': family, 'confidence': round(confidence, 3), 'transcription': transcription, 'slp1_encoding': slp1_text, 'status': status, 'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S") } def batch_process_audio_files(audio_files): if not audio_files: print("❌ No audio files to process.") return [] results = [complete_speech_to_text_pipeline(f) for f in audio_files] success_count = sum(1 for r in results if r['status'] == 'Success') success_rate = (success_count / len(results)) * 100 if results else 0 print(f"\n🎉 Batch processing completed! Success rate: {success_rate:.1f}% ({success_count}/{len(results)})") return results print("✅ Main pipeline ready.\n") print("CELL 12: Defining report generation and main execution logic...") def generate_excel_report(results): if not results: return None df = pd.DataFrame(results) def get_ground_truth(path): parts = path.split('/') for part in reversed(parts): if len(part) == 2 and part.isalpha() and part in ALL_SUPPORTED_LANGS: return part return "unknown" df['ground_truth'] = df['full_path'].apply(get_ground_truth) df['is_correct'] = df.apply(lambda row: row['detected_language'] == row['ground_truth'], axis=1) filename = f"ASR_Evaluation_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx" with pd.ExcelWriter(filename, engine='xlsxwriter') as writer: df.to_excel(writer, sheet_name='Detailed_Results', index=False) # Summary Sheet summary_data = { 'Metric': ['Total Files', 'Successful Transcriptions', 'Overall LID Accuracy'], 'Value': [len(df), df['status'].eq('Success').sum(), f"{df['is_correct'].mean()*100:.2f}%"] } pd.DataFrame(summary_data).to_excel(writer, sheet_name='Summary', index=False) print(f"\n✅ Comprehensive Excel report generated: {filename}") except Exception as e: print(f" Could not auto-download file: {e}") return filename # --- MAIN EXECUTION --- print("\n🚀🚀🚀 Starting the Full ASR Pipeline 🚀🚀🚀") audio_files_to_process = get_audio_files() if audio_files_to_process: pipeline_results = batch_process_audio_files(audio_files_to_process) generate_excel_report(pipeline_results) else: print("\nNo audio files were selected. Exiting.")