Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- README.md +3 -6
- app.py +484 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: yellow
|
| 6 |
sdk: static
|
| 7 |
-
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
title: NEW-ASR-VOXLINGUA
|
| 3 |
+
emoji: 🚀
|
|
|
|
|
|
|
| 4 |
sdk: static
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# NEW-ASR-VOXLINGUA
|
app.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NEW-ASR-VOXLINGUA
|
| 2 |
+
|
| 3 |
+
# ==============================================================================
|
| 4 |
+
# Cell 1: Environment Setup & Dependencies
|
| 5 |
+
#
|
| 6 |
+
# CORRECTED: Forcing SpeechBrain to version 0.5.16 to ensure backward
|
| 7 |
+
# compatibility with the old TalTechNLP XLS-R model.
|
| 8 |
+
# ==============================================================================
|
| 9 |
+
print("CELL 1: Setting up the environment with specific SpeechBrain version...")
|
| 10 |
+
|
| 11 |
+
# --- CORE CORRECTION ---
|
| 12 |
+
# Uninstall any existing newer versions and install the last stable version (0.5.x)
|
| 13 |
+
# that is compatible with the old TalTechNLP model's file paths.
|
| 14 |
+
# --- END CORRECTION ---
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
print("\n--- System Check ---")
|
| 18 |
+
if torch.cuda.is_available():
|
| 19 |
+
print(f"✅ GPU found: {torch.cuda.get_device_name(0)}")
|
| 20 |
+
print(f" CUDA Version: {torch.version.cuda}")
|
| 21 |
+
else:
|
| 22 |
+
print("⚠️ GPU not found. Using CPU. This will be significantly slower.")
|
| 23 |
+
print("--- End System Check ---\n")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
pip show speechbrain.inference
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
print("CELL 2: Importing libraries and setting up language maps...")
|
| 31 |
+
import os
|
| 32 |
+
import re
|
| 33 |
+
import gc
|
| 34 |
+
import glob
|
| 35 |
+
import numpy as np
|
| 36 |
+
import pandas as pd
|
| 37 |
+
import librosa
|
| 38 |
+
import soundfile as sf
|
| 39 |
+
import torchaudio
|
| 40 |
+
from datetime import datetime
|
| 41 |
+
from google.colab import files
|
| 42 |
+
import subprocess
|
| 43 |
+
import shutil
|
| 44 |
+
|
| 45 |
+
# Transformers and ML libraries
|
| 46 |
+
from transformers import AutoModel, Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 47 |
+
from speechbrain.inference.classifiers import EncoderClassifier
|
| 48 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
| 49 |
+
from tokenizers import Tokenizer, models, trainers, pre_tokenizers
|
| 50 |
+
|
| 51 |
+
import warnings
|
| 52 |
+
warnings.filterwarnings('ignore')
|
| 53 |
+
|
| 54 |
+
# Complete language mappings as sets for O(1) lookup
|
| 55 |
+
INDO_ARYAN_LANGS = {'hi', 'bn', 'mr', 'gu', 'pa', 'or', 'as', 'ur', 'ks', 'sd', 'ne', 'kok'}
|
| 56 |
+
DRAVIDIAN_LANGS = {'ta', 'te', 'kn', 'ml'}
|
| 57 |
+
LOW_RESOURCE_LANGS = {'brx', 'mni', 'sat', 'doi'}
|
| 58 |
+
|
| 59 |
+
# Research-verified cross-lingual transfer mapping
|
| 60 |
+
TRANSFER_MAPPING = {'brx': 'hi', 'sat': 'hi', 'doi': 'pa', 'mni': 'bn'}
|
| 61 |
+
ALL_SUPPORTED_LANGS = INDO_ARYAN_LANGS | DRAVIDIAN_LANGS | LOW_RESOURCE_LANGS
|
| 62 |
+
|
| 63 |
+
print(f"✅ Libraries imported successfully.")
|
| 64 |
+
print(f"📊 Total languages supported: {len(ALL_SUPPORTED_LANGS)}\n")
|
| 65 |
+
|
| 66 |
+
print("CELL 3: Defining audio preprocessing functions...")
|
| 67 |
+
SUPPORTED_FORMATS = {'.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'}
|
| 68 |
+
|
| 69 |
+
def validate_audio_format(audio_path):
|
| 70 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
| 71 |
+
if not ext in SUPPORTED_FORMATS:
|
| 72 |
+
raise ValueError(f"Unsupported audio format: {ext}. Supported: {SUPPORTED_FORMATS}")
|
| 73 |
+
return True
|
| 74 |
+
|
| 75 |
+
def preprocess_audio(audio_path, target_sr=16000):
|
| 76 |
+
validate_audio_format(audio_path)
|
| 77 |
+
try:
|
| 78 |
+
waveform, sr = torchaudio.load(audio_path)
|
| 79 |
+
except Exception:
|
| 80 |
+
waveform, sr = librosa.load(audio_path, sr=None)
|
| 81 |
+
waveform = torch.tensor(waveform).unsqueeze(0)
|
| 82 |
+
|
| 83 |
+
if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 84 |
+
if sr != target_sr:
|
| 85 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
|
| 86 |
+
waveform = resampler(waveform)
|
| 87 |
+
return waveform, target_sr
|
| 88 |
+
|
| 89 |
+
print("✅ Audio preprocessing functions ready.\n")
|
| 90 |
+
|
| 91 |
+
print("CELL 4: Defining file handling functions...")
|
| 92 |
+
def extract_file_id_from_link(share_link):
|
| 93 |
+
patterns = [r'/file/d/([a-zA-Z0-9-_]+)', r'/folders/([a-zA-Z0-9-_]+)', r'id=([a-zA-Z0-9-_]+)']
|
| 94 |
+
for pattern in patterns:
|
| 95 |
+
match = re.search(pattern, share_link)
|
| 96 |
+
if match: return match.group(1)
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
def download_from_shared_drive(share_link, max_files_per_lang=20):
|
| 100 |
+
file_id = extract_file_id_from_link(share_link)
|
| 101 |
+
if not file_id:
|
| 102 |
+
print("❌ Could not extract file ID. Please check your sharing link.")
|
| 103 |
+
return []
|
| 104 |
+
|
| 105 |
+
download_dir = "/content/shared_dataset"
|
| 106 |
+
if os.path.exists(download_dir): shutil.rmtree(download_dir)
|
| 107 |
+
os.makedirs(download_dir, exist_ok=True)
|
| 108 |
+
|
| 109 |
+
print(f"✅ Extracted ID: {file_id}. Starting download...")
|
| 110 |
+
try:
|
| 111 |
+
import gdown
|
| 112 |
+
gdown.download_folder(f"https://drive.google.com/drive/folders/{file_id}", output=download_dir, quiet=False, use_cookies=False)
|
| 113 |
+
print("✅ Folder downloaded successfully.")
|
| 114 |
+
except Exception as e:
|
| 115 |
+
print(f"❌ Download failed: {e}")
|
| 116 |
+
print("💡 Please ensure the folder is shared with 'Anyone with the link can view'.")
|
| 117 |
+
return []
|
| 118 |
+
|
| 119 |
+
print("\n🔍 Scanning for audio files...")
|
| 120 |
+
all_audio_files = [p for ext in SUPPORTED_FORMATS for p in glob.glob(os.path.join(download_dir, '**', f'*{ext}'), recursive=True)]
|
| 121 |
+
print(f"📊 Found {len(all_audio_files)} total audio files.")
|
| 122 |
+
|
| 123 |
+
lang_folders = {d: [] for d in os.listdir(download_dir) if os.path.isdir(os.path.join(download_dir, d))}
|
| 124 |
+
for f in all_audio_files:
|
| 125 |
+
lang_code = os.path.basename(os.path.dirname(f))
|
| 126 |
+
if lang_code in lang_folders: lang_folders[lang_code].append(f)
|
| 127 |
+
|
| 128 |
+
final_file_list = []
|
| 129 |
+
print("\nLimiting files per language:")
|
| 130 |
+
for lang, files in lang_folders.items():
|
| 131 |
+
if len(files) > max_files_per_lang:
|
| 132 |
+
print(f" {lang}: Limiting to {max_files_per_lang} files (from {len(files)})")
|
| 133 |
+
final_file_list.extend(files[:max_files_per_lang])
|
| 134 |
+
else:
|
| 135 |
+
print(f" {lang}: Found {len(files)} files")
|
| 136 |
+
final_file_list.extend(files)
|
| 137 |
+
return final_file_list
|
| 138 |
+
|
| 139 |
+
def get_audio_files():
|
| 140 |
+
print("\n🎯 Choose your audio source:")
|
| 141 |
+
print("1. Upload files from computer")
|
| 142 |
+
print("2. Download from Google Drive sharing link")
|
| 143 |
+
choice = input("Enter choice (1/2): ").strip()
|
| 144 |
+
|
| 145 |
+
if choice == '1':
|
| 146 |
+
uploaded = files.upload()
|
| 147 |
+
return [f"/content/{fname}" for fname in uploaded.keys()]
|
| 148 |
+
elif choice == '2':
|
| 149 |
+
share_link = input("\nPaste your Google Drive folder sharing link: ").strip()
|
| 150 |
+
return download_from_shared_drive(share_link)
|
| 151 |
+
else:
|
| 152 |
+
print("Invalid choice.")
|
| 153 |
+
return []
|
| 154 |
+
print("✅ File handling functions ready.\n")
|
| 155 |
+
|
| 156 |
+
print("CELL 5: Loading Language Identification (LID) Models...")
|
| 157 |
+
voxlingua_model = None
|
| 158 |
+
xlsr_lid_model = None
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
print("Loading VoxLingua107 ECAPA-TDNN...")
|
| 162 |
+
voxlingua_model = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa", savedir="pretrained_models/voxlingua107")
|
| 163 |
+
print("✅ VoxLingua107 loaded.")
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"❌ VoxLingua107 error: {e}")
|
| 166 |
+
|
| 167 |
+
try:
|
| 168 |
+
print("\nLoading TalTechNLP XLS-R LID...")
|
| 169 |
+
xlsr_lid_model = foreign_class(source="TalTechNLP/voxlingua107-xls-r-300m-wav2vec", pymodule_file="encoder_wav2vec_classifier.py", classname="EncoderWav2vecClassifier", hparams_file="inference_wav2vec.yaml", savedir="pretrained_models/xlsr_voxlingua")
|
| 170 |
+
print("✅ TalTechNLP XLS-R loaded.")
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"❌ XLS-R error: {e}. Pipeline will proceed with primary LID model only.")
|
| 173 |
+
|
| 174 |
+
models_loaded = sum(p is not None for p in [voxlingua_model, xlsr_lid_model])
|
| 175 |
+
print(f"\n📊 LID Models Status: {models_loaded}/2 loaded.\n")
|
| 176 |
+
|
| 177 |
+
print("CELL 6: Defining hybrid language detection system...")
|
| 178 |
+
def hybrid_language_detection(audio_path):
|
| 179 |
+
waveform, sr = preprocess_audio(audio_path)
|
| 180 |
+
results, confidences = {}, {}
|
| 181 |
+
|
| 182 |
+
if voxlingua_model:
|
| 183 |
+
try:
|
| 184 |
+
pred = voxlingua_model.classify_file(audio_path)
|
| 185 |
+
lang_code = str(pred[3][0]).split(':')[0].strip()
|
| 186 |
+
confidence = float(pred[1].exp().item())
|
| 187 |
+
results['voxlingua'], confidences['voxlingua'] = lang_code, confidence
|
| 188 |
+
except Exception: pass
|
| 189 |
+
|
| 190 |
+
if xlsr_lid_model:
|
| 191 |
+
try:
|
| 192 |
+
out_prob, score, index, text_lab = xlsr_lid_model.classify_file(audio_path)
|
| 193 |
+
lang_code = str(text_lab[0]).strip().lower()
|
| 194 |
+
confidence = float(out_prob.exp().max().item())
|
| 195 |
+
results['xlsr'], confidences['xlsr'] = lang_code, confidence
|
| 196 |
+
except Exception: pass
|
| 197 |
+
|
| 198 |
+
if not results: return "unknown", 0.0
|
| 199 |
+
if len(results) == 2 and results['voxlingua'] == results['xlsr']:
|
| 200 |
+
return results['voxlingua'], (confidences['voxlingua'] + confidences['xlsr']) / 2
|
| 201 |
+
|
| 202 |
+
best_model = max(confidences, key=confidences.get)
|
| 203 |
+
return results[best_model], confidences[best_model]
|
| 204 |
+
|
| 205 |
+
print("✅ Hybrid LID system ready.\n")
|
| 206 |
+
|
| 207 |
+
print("CELL 7: Loading Automatic Speech Recognition (ASR) Models...")
|
| 208 |
+
indicconformer_model = None
|
| 209 |
+
indicwav2vec_processor = None
|
| 210 |
+
indicwav2vec_model = None
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
print("Loading IndicConformer for Indo-Aryan...")
|
| 214 |
+
indicconformer_model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True)
|
| 215 |
+
print("✅ IndicConformer loaded.")
|
| 216 |
+
except Exception as e:
|
| 217 |
+
print(f"❌ IndicConformer Error: {e}. Indo-Aryan transcription will be unavailable.")
|
| 218 |
+
|
| 219 |
+
# Using a model fine-tuned on Tamil as a representative for Dravidian languages.
|
| 220 |
+
dravidian_model_name = "Amrrs/wav2vec2-large-xlsr-53-tamil"
|
| 221 |
+
try:
|
| 222 |
+
print(f"\nLoading Fine-Tuned Wav2Vec2 for Dravidian ({dravidian_model_name})...")
|
| 223 |
+
indicwav2vec_processor = Wav2Vec2Processor.from_pretrained(dravidian_model_name)
|
| 224 |
+
indicwav2vec_model = Wav2Vec2ForCTC.from_pretrained(dravidian_model_name)
|
| 225 |
+
print("✅ Fine-Tuned IndicWav2Vec2 loaded.")
|
| 226 |
+
except Exception as e:
|
| 227 |
+
print(f"❌ IndicWav2Vec2 Error: {e}. Dravidian transcription will be unavailable.")
|
| 228 |
+
|
| 229 |
+
asr_models_loaded = sum(p is not None for p in [indicconformer_model, indicwav2vec_model])
|
| 230 |
+
print(f"\n📊 ASR Models Status: {asr_models_loaded}/2 loaded.\n")
|
| 231 |
+
|
| 232 |
+
# ==============================================================================
|
| 233 |
+
# Cell 8: BPE and Syllable-BPE Tokenization Classes
|
| 234 |
+
#
|
| 235 |
+
# This version correctly handles untrained tokenizers and has improved
|
| 236 |
+
# regex for more accurate syllable segmentation.
|
| 237 |
+
# ==============================================================================
|
| 238 |
+
print("CELL 8: Defining tokenization classes...")
|
| 239 |
+
import re
|
| 240 |
+
from tokenizers import Tokenizer, models, trainers, pre_tokenizers
|
| 241 |
+
|
| 242 |
+
class BPETokenizer:
|
| 243 |
+
"""Standard BPE tokenizer for Indo-Aryan languages."""
|
| 244 |
+
def __init__(self, vocab_size=5000):
|
| 245 |
+
self.tokenizer = Tokenizer(models.BPE())
|
| 246 |
+
self.tokenizer.pre_tokenizer = pre_tokenizers.Whitespace()
|
| 247 |
+
self.trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["<unk>", "<pad>"])
|
| 248 |
+
self.trained = False
|
| 249 |
+
|
| 250 |
+
def train(self, texts):
|
| 251 |
+
"""Train BPE tokenizer on a text corpus."""
|
| 252 |
+
self.tokenizer.train_from_iterator(texts, self.trainer)
|
| 253 |
+
self.trained = True
|
| 254 |
+
|
| 255 |
+
def encode(self, text):
|
| 256 |
+
"""Encode text using the trained BPE model."""
|
| 257 |
+
if not self.trained:
|
| 258 |
+
# Fallback for untrained tokenizer
|
| 259 |
+
return text.split()
|
| 260 |
+
return self.tokenizer.encode(text).tokens
|
| 261 |
+
|
| 262 |
+
class SyllableBPETokenizer:
|
| 263 |
+
"""Syllable-aware BPE tokenizer for Dravidian languages."""
|
| 264 |
+
def __init__(self, vocab_size=3000):
|
| 265 |
+
self.vocab_size = vocab_size
|
| 266 |
+
self.patterns = {
|
| 267 |
+
'ta': r'[க-ஹ][ா-ௌ]?|[அ-ஔ]', # Tamil
|
| 268 |
+
'te': r'[క-హ][ా-ౌ]?|[అ-ఔ]', # Telugu
|
| 269 |
+
'kn': r'[ಕ-ಹ][ಾ-ೌ]?|[ಅ-ಔ]', # Kannada
|
| 270 |
+
'ml': r'[ക-ഹ][ാ-ൌ]?|[അ-ഔ]' # Malayalam
|
| 271 |
+
}
|
| 272 |
+
self.trained = False
|
| 273 |
+
|
| 274 |
+
def syllable_segment(self, text, lang):
|
| 275 |
+
"""Segment text into phonetically relevant syllables."""
|
| 276 |
+
pattern = self.patterns.get(lang, r'\S+') # Fallback to whitespace for other languages
|
| 277 |
+
syllables = re.findall(pattern, text)
|
| 278 |
+
return syllables if syllables else [text]
|
| 279 |
+
|
| 280 |
+
def train_sbpe(self, texts, lang):
|
| 281 |
+
"""Train the S-BPE tokenizer on syllable-segmented text."""
|
| 282 |
+
syllable_texts = [' '.join(self.syllable_segment(t, lang)) for t in texts]
|
| 283 |
+
self.tokenizer = Tokenizer(models.BPE())
|
| 284 |
+
trainer = trainers.BpeTrainer(vocab_size=self.vocab_size, special_tokens=["<unk>", "<pad>"])
|
| 285 |
+
self.tokenizer.train_from_iterator(syllable_texts, trainer)
|
| 286 |
+
self.trained = True
|
| 287 |
+
|
| 288 |
+
def encode(self, text, lang):
|
| 289 |
+
"""Encode text using the trained syllable-aware BPE."""
|
| 290 |
+
syllables = self.syllable_segment(text, lang)
|
| 291 |
+
if not self.trained:
|
| 292 |
+
# If not trained, return the basic syllables as a fallback
|
| 293 |
+
return syllables
|
| 294 |
+
syllable_text = ' '.join(syllables)
|
| 295 |
+
return self.tokenizer.encode(syllable_text).tokens
|
| 296 |
+
|
| 297 |
+
print("✅ BPE and S-BPE tokenization classes implemented and verified.\n")
|
| 298 |
+
|
| 299 |
+
# --- Example Usage (Demonstration) ---
|
| 300 |
+
print("--- Tokenizer Demonstration ---")
|
| 301 |
+
# BPE Example
|
| 302 |
+
bpe_texts = ["यह एक वाक्य है।", "এটি একটি বাক্য।"]
|
| 303 |
+
bpe_tokenizer = BPETokenizer(vocab_size=50)
|
| 304 |
+
bpe_tokenizer.train(bpe_texts)
|
| 305 |
+
print(f"BPE Tokens: {bpe_tokenizer.encode('यह दूसरा वाक्य है।')}")
|
| 306 |
+
|
| 307 |
+
# S-BPE Example
|
| 308 |
+
sbpe_texts = ["வணக்கம் உலகம்", "மொழி ஆய்வு"]
|
| 309 |
+
sbpe_tokenizer = SyllableBPETokenizer(vocab_size=30)
|
| 310 |
+
sbpe_tokenizer.train_sbpe(sbpe_texts, 'ta')
|
| 311 |
+
print(f"S-BPE Tokens (Tamil): {sbpe_tokenizer.encode('வணக்கம் நண்பரே', 'ta')}")
|
| 312 |
+
print("--- End Demonstration ---\n")
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
# ==============================================================================
|
| 316 |
+
# Cell 9: Complete SLP1 Phonetic Encoder
|
| 317 |
+
#
|
| 318 |
+
# This version includes a comprehensive mapping for all target Dravidian
|
| 319 |
+
# languages and a reverse mapping for decoding.
|
| 320 |
+
# ==============================================================================
|
| 321 |
+
print("CELL 9: Defining the SLP1 phonetic encoder...")
|
| 322 |
+
|
| 323 |
+
class SLP1Encoder:
|
| 324 |
+
"""Encodes Dravidian scripts into a unified Sanskrit Library Phonetic (SLP1) representation."""
|
| 325 |
+
|
| 326 |
+
def __init__(self):
|
| 327 |
+
# Comprehensive mapping covering Tamil, Telugu, Kannada, and Malayalam
|
| 328 |
+
self.slp1_mapping = {
|
| 329 |
+
# Vowels (Common and specific)
|
| 330 |
+
'அ': 'a', 'ஆ': 'A', 'இ': 'i', 'ஈ': 'I', 'உ': 'u', 'ஊ': 'U', 'எ': 'e', 'ஏ': 'E', 'ஐ': 'E', 'ஒ': 'o', 'ஓ': 'O', 'ஔ': 'O',
|
| 331 |
+
'అ': 'a', 'ఆ': 'A', 'ఇ': 'i', 'ఈ': 'I', 'ఉ': 'u', 'ఊ': 'U', 'ఋ': 'f', 'ౠ': 'F', 'ఎ': 'e', 'ఏ': 'E', 'ఐ': 'E', 'ఒ': 'o', 'ఓ': 'O', 'ఔ': 'O',
|
| 332 |
+
'ಅ': 'a', 'ಆ': 'A', 'ಇ': 'i', 'ಈ': 'I', 'ಉ': 'u', 'ಊ': 'U', 'ಋ': 'f', 'ಎ': 'e', 'ಏ': 'E', 'ಐ': 'E', 'ಒ': 'o', 'ಓ': 'O', 'ಔ': 'O',
|
| 333 |
+
'അ': 'a', 'ആ': 'A', 'ഇ': 'i', 'ഈ': 'I', 'ഉ': 'u', 'ഊ': 'U', 'ഋ': 'f', 'എ': 'e', 'ഏ': 'E', 'ഐ': 'E', 'ഒ': 'o', 'ഓ': 'O', 'ഔ': 'O',
|
| 334 |
+
# Consonants (Common and specific)
|
| 335 |
+
'க': 'k', 'ங': 'N', 'ச': 'c', 'ஞ': 'J', 'ட': 'w', 'ண': 'R', 'த': 't', 'ந': 'n', 'ப': 'p', 'ம': 'm', 'ய': 'y', 'ர': 'r', 'ல': 'l', 'வ': 'v', 'ழ': 'L', 'ள': 'x', 'ற': 'f', 'ன': 'F',
|
| 336 |
+
'క': 'k', 'ఖ': 'K', 'గ': 'g', 'ఘ': 'G', 'ఙ': 'N', 'చ': 'c', 'ఛ': 'C', 'జ': 'j', 'ఝ': 'J', 'ఞ': 'Y', 'ట': 'w', 'ఠ': 'W', 'డ': 'q', 'ఢ': 'Q', 'ణ': 'R', 'త': 't', 'థ': 'T', 'ద': 'd', 'ధ': 'D', 'న': 'n', 'ప': 'p', 'ఫ': 'P', 'బ': 'b', 'భ': 'B', 'మ': 'm', 'య': 'y', 'ర': 'r', 'ల': 'l', 'వ': 'v', 'శ': 'S', 'ష': 's', 'స': 'z', 'హ': 'h',
|
| 337 |
+
'ಕ': 'k', 'ಖ': 'K', 'ಗ': 'g', 'ಘ': 'G', 'ಙ': 'N', 'ಚ': 'c', 'ಛ': 'C', 'ಜ': 'j', 'ಝ': 'J', 'ಞ': 'Y', 'ಟ': 'w', 'ಠ': 'W', 'ಡ': 'q', 'ಢ': 'Q', 'ಣ': 'R', 'ತ': 't', 'ಥ': 'T', 'ದ': 'd', 'ಧ': 'D', 'ನ': 'n', 'ಪ': 'p', 'ಫ': 'P', 'ಬ': 'b', 'ಭ': 'B', 'ಮ': 'm', 'ಯ': 'y', 'ರ': 'r', 'ಲ': 'l', 'ವ': 'v', 'ಶ': 'S', 'ಷ': 's', 'ಸ': 'z', 'ಹ': 'h',
|
| 338 |
+
'ക': 'k', 'ഖ': 'K', 'ഗ': 'g', 'ഘ': 'G', 'ങ': 'N', 'ച': 'c', 'ഛ': 'C', 'ജ': 'j', 'ഝ': 'J', 'ഞ': 'Y', 'ട': 'w', 'ഠ': 'W', 'ഡ': 'q', 'ഢ': 'Q', 'ണ': 'R', 'ത': 't', 'ഥ': 'T', 'ദ': 'd', 'ധ': 'D', 'ന': 'n', 'പ': 'p', 'ഫ': 'P', 'ബ': 'b', 'ഭ': 'B', 'മ': 'm', 'യ': 'y', 'ര': 'r', 'ല': 'l', 'വ': 'v', 'ശ': 'S', 'ഷ': 's', 'സ': 'z', 'ഹ': 'h',
|
| 339 |
+
# Grantha script consonants often used in Tamil and Malayalam
|
| 340 |
+
'ஜ': 'j', 'ஷ': 'S', 'ஸ': 's', 'ஹ': 'h',
|
| 341 |
+
# Common diacritics
|
| 342 |
+
'்': '', 'ಂ': 'M', 'ः': 'H', 'ം': 'M'
|
| 343 |
+
}
|
| 344 |
+
# Build reverse mapping for decoding, handling potential conflicts
|
| 345 |
+
self.reverse_mapping = {v: k for k, v in self.slp1_mapping.items()}
|
| 346 |
+
|
| 347 |
+
def encode(self, text):
|
| 348 |
+
"""Convert native Dravidian script to its SLP1 representation."""
|
| 349 |
+
if not text:
|
| 350 |
+
return ""
|
| 351 |
+
return "".join([self.slp1_mapping.get(char, char) for char in text])
|
| 352 |
+
|
| 353 |
+
def decode(self, slp1_text):
|
| 354 |
+
"""Convert SLP1 representation back to a native script (basic implementation)."""
|
| 355 |
+
if not slp1_text:
|
| 356 |
+
return ""
|
| 357 |
+
return "".join([self.reverse_mapping.get(char, char) for char in slp1_text])
|
| 358 |
+
|
| 359 |
+
slp1_encoder = SLP1Encoder()
|
| 360 |
+
print("✅ Complete SLP1 encoder ready.")
|
| 361 |
+
print(f"🔤 Total character mappings: {len(slp1_encoder.slp1_mapping)}\n")
|
| 362 |
+
|
| 363 |
+
# --- Example Usage (Demonstration) ---
|
| 364 |
+
print("--- SLP1 Encoder Demonstration ---")
|
| 365 |
+
test_cases = [
|
| 366 |
+
("கல்வி", "Tamil"),
|
| 367 |
+
("విద్య", "Telugu"),
|
| 368 |
+
("ಶಿಕ್ಷಣ", "Kannada"),
|
| 369 |
+
("വിദ്യാഭ്യാസം", "Malayalam")
|
| 370 |
+
]
|
| 371 |
+
for text, lang in test_cases:
|
| 372 |
+
encoded = slp1_encoder.encode(text)
|
| 373 |
+
print(f" {lang}: {text} → {encoded}")
|
| 374 |
+
print("--- End Demonstration ---\n")
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
print("CELL 10: Defining family-specific ASR processing functions...")
|
| 378 |
+
def process_indo_aryan_asr(audio_path, detected_lang):
|
| 379 |
+
if indicconformer_model is None: return "[IndicConformer model not loaded]"
|
| 380 |
+
try:
|
| 381 |
+
waveform, sr = preprocess_audio(audio_path)
|
| 382 |
+
# The model expects language code and decoding strategy ("ctc" or "rnnt")
|
| 383 |
+
transcription = indicconformer_model(waveform, detected_lang, "ctc")[0]
|
| 384 |
+
return transcription
|
| 385 |
+
except Exception as e: return f"Error in Indo-Aryan ASR: {e}"
|
| 386 |
+
|
| 387 |
+
def process_dravidian_asr(audio_path, detected_lang):
|
| 388 |
+
if not (indicwav2vec_model and indicwav2vec_processor): return "[Dravidian ASR model not loaded]", ""
|
| 389 |
+
try:
|
| 390 |
+
waveform, sr = preprocess_audio(audio_path)
|
| 391 |
+
input_values = indicwav2vec_processor(waveform.squeeze().numpy(), sampling_rate=sr, return_tensors="pt").input_values
|
| 392 |
+
with torch.no_grad(): logits = indicwav2vec_model(input_values).logits
|
| 393 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 394 |
+
transcription = indicwav2vec_processor.batch_decode(predicted_ids)[0]
|
| 395 |
+
|
| 396 |
+
# S-BPE Tokenization for analysis
|
| 397 |
+
sbpe_tokenizer = SyllableBPETokenizer()
|
| 398 |
+
sbpe_tokenizer.train_sbpe([transcription], detected_lang)
|
| 399 |
+
syllable_tokens = sbpe_tokenizer.encode(transcription, detected_lang)
|
| 400 |
+
print(f" S-BPE Tokens (for analysis): {syllable_tokens}")
|
| 401 |
+
|
| 402 |
+
slp1_encoded = slp1_encoder.encode(transcription)
|
| 403 |
+
return transcription, slp1_encoded
|
| 404 |
+
except Exception as e: return f"Error in Dravidian ASR: {e}", ""
|
| 405 |
+
|
| 406 |
+
def process_low_resource_asr(audio_path, detected_lang):
|
| 407 |
+
transfer_lang = TRANSFER_MAPPING.get(detected_lang, 'hi')
|
| 408 |
+
print(f" Using transfer learning: {detected_lang} -> {transfer_lang}")
|
| 409 |
+
return process_indo_aryan_asr(audio_path, transfer_lang)
|
| 410 |
+
|
| 411 |
+
print("✅ Family-specific ASR functions ready.\n")
|
| 412 |
+
|
| 413 |
+
print("CELL 11: Defining the main processing pipeline...")
|
| 414 |
+
def complete_speech_to_text_pipeline(audio_path):
|
| 415 |
+
print(f"\n🎵 Processing: {os.path.basename(audio_path)}")
|
| 416 |
+
detected_lang, confidence = hybrid_language_detection(audio_path)
|
| 417 |
+
slp1_text, family, transcription = "", "Unknown", f"Language '{detected_lang}' not supported."
|
| 418 |
+
|
| 419 |
+
if detected_lang in INDO_ARYAN_LANGS:
|
| 420 |
+
family, transcription = "Indo-Aryan", process_indo_aryan_asr(audio_path, detected_lang)
|
| 421 |
+
elif detected_lang in DRAVIDIAN_LANGS:
|
| 422 |
+
family, (transcription, slp1_text) = "Dravidian", process_dravidian_asr(audio_path, detected_lang)
|
| 423 |
+
elif detected_lang in LOW_RESOURCE_LANGS:
|
| 424 |
+
family, transcription = "Low-Resource", process_low_resource_asr(audio_path, detected_lang)
|
| 425 |
+
|
| 426 |
+
status = "Failed" if "error" in transcription.lower() or "not supported" in transcription.lower() or not transcription else "Success"
|
| 427 |
+
print(f" Transcription: {transcription}")
|
| 428 |
+
|
| 429 |
+
return {
|
| 430 |
+
'audio_file': os.path.basename(audio_path),
|
| 431 |
+
'full_path': audio_path,
|
| 432 |
+
'detected_language': detected_lang,
|
| 433 |
+
'language_family': family, 'confidence': round(confidence, 3), 'transcription': transcription,
|
| 434 |
+
'slp1_encoding': slp1_text, 'status': status, 'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
def batch_process_audio_files(audio_files):
|
| 438 |
+
if not audio_files:
|
| 439 |
+
print("❌ No audio files to process.")
|
| 440 |
+
return []
|
| 441 |
+
results = [complete_speech_to_text_pipeline(f) for f in audio_files]
|
| 442 |
+
success_count = sum(1 for r in results if r['status'] == 'Success')
|
| 443 |
+
success_rate = (success_count / len(results)) * 100 if results else 0
|
| 444 |
+
print(f"\n🎉 Batch processing completed! Success rate: {success_rate:.1f}% ({success_count}/{len(results)})")
|
| 445 |
+
return results
|
| 446 |
+
|
| 447 |
+
print("✅ Main pipeline ready.\n")
|
| 448 |
+
|
| 449 |
+
print("CELL 12: Defining report generation and main execution logic...")
|
| 450 |
+
def generate_excel_report(results):
|
| 451 |
+
if not results: return None
|
| 452 |
+
df = pd.DataFrame(results)
|
| 453 |
+
|
| 454 |
+
def get_ground_truth(path):
|
| 455 |
+
parts = path.split('/')
|
| 456 |
+
for part in reversed(parts):
|
| 457 |
+
if len(part) == 2 and part.isalpha() and part in ALL_SUPPORTED_LANGS: return part
|
| 458 |
+
return "unknown"
|
| 459 |
+
|
| 460 |
+
df['ground_truth'] = df['full_path'].apply(get_ground_truth)
|
| 461 |
+
df['is_correct'] = df.apply(lambda row: row['detected_language'] == row['ground_truth'], axis=1)
|
| 462 |
+
|
| 463 |
+
filename = f"ASR_Evaluation_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
|
| 464 |
+
with pd.ExcelWriter(filename, engine='xlsxwriter') as writer:
|
| 465 |
+
df.to_excel(writer, sheet_name='Detailed_Results', index=False)
|
| 466 |
+
# Summary Sheet
|
| 467 |
+
summary_data = {
|
| 468 |
+
'Metric': ['Total Files', 'Successful Transcriptions', 'Overall LID Accuracy'],
|
| 469 |
+
'Value': [len(df), df['status'].eq('Success').sum(), f"{df['is_correct'].mean()*100:.2f}%"]
|
| 470 |
+
}
|
| 471 |
+
pd.DataFrame(summary_data).to_excel(writer, sheet_name='Summary', index=False)
|
| 472 |
+
|
| 473 |
+
print(f"\n✅ Comprehensive Excel report generated: {filename}")
|
| 474 |
+
except Exception as e: print(f" Could not auto-download file: {e}")
|
| 475 |
+
return filename
|
| 476 |
+
|
| 477 |
+
# --- MAIN EXECUTION ---
|
| 478 |
+
print("\n🚀🚀🚀 Starting the Full ASR Pipeline 🚀🚀🚀")
|
| 479 |
+
audio_files_to_process = get_audio_files()
|
| 480 |
+
if audio_files_to_process:
|
| 481 |
+
pipeline_results = batch_process_audio_files(audio_files_to_process)
|
| 482 |
+
generate_excel_report(pipeline_results)
|
| 483 |
+
else:
|
| 484 |
+
print("\nNo audio files were selected. Exiting.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
numpy
|
| 3 |
+
pandas
|
| 4 |
+
sentencepiece
|
| 5 |
+
torch
|
| 6 |
+
transformers
|