#!/usr/bin/env python3 """ Train reading and controlling probes for LLM attribute detection. This script trains linear probes on different layers of a language model to detect demographic attributes (age, gender, socioeconomic status, education level). """ import os import sys import argparse import pickle import time from pathlib import Path from typing import Dict, List, Tuple, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader, Subset from transformers import AutoTokenizer, AutoModelForCausalLM from tqdm.auto import tqdm import sklearn.model_selection from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix import matplotlib.pyplot as plt # Import custom modules try: from src.dataset import TextDataset from src.probes import LinearProbeClassification from src.train_test_utils import train, test from src.losses import edl_mse_loss except ImportError as e: print(f"โŒ ERROR: Failed to import required modules: {e}") print("Please ensure all required modules are in the correct location.") sys.exit(1) class TrainerConfig: """Configuration for training probes.""" learning_rate = 1e-3 betas = (0.9, 0.95) weight_decay = 0.1 # only applied on matmul weights def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class ProbeTrainer: """Main class for training reading and controlling probes.""" def __init__(self, model_name: str = "meta-llama/Llama-2-13b-chat-hf", device: str = "cuda", use_auth_token: bool = True): """ Initialize the probe trainer. Args: model_name: HuggingFace model name device: Device to use for training use_auth_token: Whether to use auth token for model download """ self.device = device self.model_name = model_name # Configuration flags self.new_prompt_format = True self.residual_stream = True self.uncertainty = False self.logistic = True self.augmented = False self.remove_last_ai_response = True self.include_inst = True self.one_hot = True # Label mappings self.label_mappings = { "_age_": { "child": 0, "adolescent": 1, "adult": 2, "older adult": 3, }, "_gender_": { "male": 0, "female": 1, }, "_socioeco_": { "low": 0, "middle": 1, "high": 2 }, "_education_": { "someschool": 0, "highschool": 1, "collegemore": 2 } } self.prompt_translator = { "_age_": "age", "_gender_": "gender", "_socioeco_": "socioeconomic status", "_education_": "education level", } self.openai_dataset = { "_age_": "data/dataset/openai_age_1/", "_gender_": "data/dataset/openai_gender_1/", "_education_": "data/dataset/openai_education_1/", "_socioeco_": "data/dataset/openai_socioeconomic_1/", } # Dataset configurations self.dataset_configs = [ ("data/dataset/llama_age_1/", "_age_"), ("data/dataset/llama_gender_1/", "_gender_"), ("data/dataset/llama_socioeconomic_1/", "_socioeco_"), ("data/dataset/openai_education_1/", "_education_"), ] # Initialize model and tokenizer print(f"๐Ÿš€ Initializing ProbeTrainer with model: {model_name}") self._initialize_model() def _initialize_model(self): """Initialize the tokenizer and model.""" try: print("๐Ÿ“ฅ Loading tokenizer...") self.tokenizer = AutoTokenizer.from_pretrained( self.model_name, use_auth_token=True ) print("โœ… Tokenizer loaded successfully") print("๐Ÿ“ฅ Loading model...") self.model = AutoModelForCausalLM.from_pretrained( self.model_name, use_auth_token=True ) if self.device == "cuda": print("๐Ÿ”ง Moving model to GPU and setting to half precision...") self.model.half().cuda() self.model.eval() print("โœ… Model loaded and ready") except Exception as e: print(f"โŒ ERROR: Failed to initialize model: {e}") sys.exit(1) def _get_additional_datasets(self, label_idf: str, directory: str) -> List[str]: """Get additional datasets for training.""" additional_dataset = [] if label_idf == "_education_": additional_dataset = [] else: # Replace _1/ with _2/ for the second dataset additional_dataset = [ directory.replace("_1/", "_2/"), self.openai_dataset[label_idf] ] # Add extra datasets based on attribute type if label_idf == "_gender_": additional_dataset += [ "data/dataset/openai_gender_2/", "data/dataset/openai_gender_3/", "data/dataset/openai_gender_4", ] elif label_idf == "_education_": additional_dataset += [ "data/dataset/openai_education_three_classes_2/", "data/dataset/openai_education_three_classes_3/" ] elif label_idf == "_socioeco_": additional_dataset += [ "data/dataset/openai_socioeconomic_2/" ] elif label_idf == "_age_": additional_dataset += [ "data/dataset/openai_age_2/" ] return additional_dataset def _create_dataset(self, directory: str, label_idf: str, label_to_id: Dict, control_probe: bool = False) -> TextDataset: """Create a dataset for training.""" additional_datasets = self._get_additional_datasets(label_idf, directory) print(f" ๐Ÿ“‚ Creating dataset from {directory}") print(f" ๐Ÿ“Ž Additional datasets: {len(additional_datasets)} sources") try: dataset = TextDataset( directory, self.tokenizer, self.model, label_idf=label_idf, label_to_id=label_to_id, convert_to_llama2_format=True, additional_datas=additional_datasets, new_format=self.new_prompt_format, control_probe=control_probe, residual_stream=self.residual_stream, if_augmented=self.augmented, remove_last_ai_response=self.remove_last_ai_response, include_inst=self.include_inst, k=1, one_hot=False, last_tok_pos=-1 ) print(f" โœ… Dataset created with {len(dataset)} samples") return dataset except Exception as e: print(f" โŒ ERROR: Failed to create dataset: {e}") raise def _create_data_loaders(self, dataset: TextDataset) -> Tuple[DataLoader, DataLoader]: """Create train and test data loaders.""" train_size = int(0.8 * len(dataset)) test_size = len(dataset) - train_size print(f" ๐Ÿ“Š Splitting dataset: {train_size} train, {test_size} test") try: train_idx, val_idx = sklearn.model_selection.train_test_split( list(range(len(dataset))), test_size=test_size, train_size=train_size, random_state=12345, shuffle=True, stratify=dataset.labels, ) train_dataset = Subset(dataset, train_idx) test_dataset = Subset(dataset, val_idx) train_loader = DataLoader( train_dataset, shuffle=True, pin_memory=True, batch_size=200, num_workers=1 ) test_loader = DataLoader( test_dataset, shuffle=False, pin_memory=True, batch_size=400, num_workers=1 ) print(f" โœ… Data loaders created") return train_loader, test_loader except Exception as e: print(f" โŒ ERROR: Failed to create data loaders: {e}") raise def _train_probe_for_layer(self, train_loader: DataLoader, test_loader: DataLoader, layer_num: int, num_classes: int, dict_name: str, save_dir: str, max_epochs: int = 50) -> Tuple[float, float, float]: """Train a probe for a specific layer.""" trainer_config = TrainerConfig() probe = LinearProbeClassification( probe_class=num_classes, device=self.device, input_dim=5120, logistic=self.logistic ) optimizer, scheduler = probe.configure_optimizers(trainer_config) if self.uncertainty: loss_func = edl_mse_loss else: loss_func = nn.BCELoss() best_acc = 0 final_test_acc = 0 final_train_acc = 0 for epoch in range(1, max_epochs + 1): verbosity = (epoch == max_epochs) # Training if self.uncertainty: train_results = train( probe, self.device, train_loader, optimizer, epoch, loss_func=loss_func, verbose_interval=None, verbose=verbosity, layer_num=layer_num, return_raw_outputs=True, epoch_num=epoch, num_classes=num_classes ) test_results = test( probe, self.device, test_loader, loss_func=loss_func, return_raw_outputs=True, verbose=verbosity, layer_num=layer_num, scheduler=scheduler, epoch_num=epoch, num_classes=num_classes ) else: train_results = train( probe, self.device, train_loader, optimizer, epoch, loss_func=loss_func, verbose_interval=None, verbose=verbosity, layer_num=layer_num, return_raw_outputs=True, one_hot=self.one_hot, num_classes=num_classes ) test_results = test( probe, self.device, test_loader, loss_func=loss_func, return_raw_outputs=True, verbose=verbosity, layer_num=layer_num, scheduler=scheduler, one_hot=self.one_hot, num_classes=num_classes ) if test_results[1] > best_acc: best_acc = test_results[1] save_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}.pth" torch.save(probe.state_dict(), save_path) if epoch == max_epochs: final_test_acc = test_results[1] final_train_acc = train_results[1] # Save final model final_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}_final.pth" torch.save(probe.state_dict(), final_path) # Generate confusion matrix if verbosity: try: cm = confusion_matrix(test_results[3], test_results[2]) cm_display = ConfusionMatrixDisplay( cm, display_labels=list(self.label_mappings[f"_{dict_name}_"].keys()) ).plot() plt.savefig(f"{save_dir}/{dict_name}_layer_{layer_num}_confusion.png") plt.close() except Exception as e: print(f" โš ๏ธ Warning: Could not generate confusion matrix: {e}") return best_acc, final_test_acc, final_train_acc def train_probes(self, probe_type: str = "reading", num_layers: int = 41): """ Train probes for all attributes and layers. Args: probe_type: Type of probe to train ("reading" or "controlling") num_layers: Number of layers to train probes for """ print(f"\n{'='*80}") print(f"๐ŸŽฏ Training {probe_type.upper()} PROBES") print(f"{'='*80}\n") # Create output directory save_dir = f"probe_checkpoints/{probe_type}_probe" Path(save_dir).mkdir(parents=True, exist_ok=True) print(f"๐Ÿ“ Output directory: {save_dir}") accuracy_dict = {} control_probe = (probe_type == "controlling") for directory, label_idf in self.dataset_configs: dict_name = label_idf.strip("_") label_to_id = self.label_mappings[label_idf] print(f"\n{'-'*60}") print(f"๐Ÿท๏ธ Processing: {self.prompt_translator[label_idf].upper()}") print(f" Classes: {list(label_to_id.keys())}") print(f"{'-'*60}") try: # Create dataset dataset = self._create_dataset( directory, label_idf, label_to_id, control_probe ) # Create data loaders train_loader, test_loader = self._create_data_loaders(dataset) # Initialize accuracy tracking accuracy_dict[dict_name] = [] accuracy_dict[dict_name + "_final"] = [] accuracy_dict[dict_name + "_train"] = [] accs = [] final_accs = [] train_accs = [] # Train probes for each layer print(f"\n ๐Ÿ”„ Training probes for {num_layers} layers...") for layer_num in tqdm(range(num_layers), desc=f" Layers for {dict_name}"): try: print(f"\n Layer {layer_num}:") best_acc, final_test_acc, final_train_acc = self._train_probe_for_layer( train_loader, test_loader, layer_num, len(label_to_id), dict_name, save_dir ) accs.append(best_acc) final_accs.append(final_test_acc) train_accs.append(final_train_acc) print(f" ๐Ÿ“ˆ Best: {best_acc:.3f}, Final: {final_test_acc:.3f}, Train: {final_train_acc:.3f}") except Exception as e: print(f" โŒ ERROR: Failed to train layer {layer_num}: {e}") accs.append(0) final_accs.append(0) train_accs.append(0) # Save accuracies accuracy_dict[dict_name] = accs accuracy_dict[dict_name + "_final"] = final_accs accuracy_dict[dict_name + "_train"] = train_accs # Save intermediate results with open(f"{save_dir}_experiment.pkl", "wb") as outfile: pickle.dump(accuracy_dict, outfile) print(f" ๐Ÿ’พ Saved results to {save_dir}_experiment.pkl") # Clean up memory del dataset, train_loader, test_loader torch.cuda.empty_cache() print(f" ๐Ÿงน Cleaned up memory") except Exception as e: print(f" โŒ ERROR: Failed to process {dict_name}: {e}") continue print(f"\n{'='*80}") print(f"โœ… COMPLETED {probe_type.upper()} PROBE TRAINING") print(f"{'='*80}\n") # Print summary self._print_summary(accuracy_dict, probe_type) return accuracy_dict def _print_summary(self, accuracy_dict: Dict, probe_type: str): """Print a summary of training results.""" print(f"\n๐Ÿ“Š SUMMARY for {probe_type} probes:") print("-" * 40) for attribute in accuracy_dict: if not attribute.endswith("_final") and not attribute.endswith("_train"): best_accs = accuracy_dict[attribute] if best_accs: max_acc = max(best_accs) best_layer = best_accs.index(max_acc) avg_acc = sum(best_accs) / len(best_accs) print(f" {attribute:12s}: Best={max_acc:.3f} (layer {best_layer}), Avg={avg_acc:.3f}") def main(): """Main entry point for the script.""" parser = argparse.ArgumentParser(description="Train reading and controlling probes for LLM attribute detection") parser.add_argument("--probe-type", choices=["reading", "controlling", "both"], default="both", help="Type of probes to train") parser.add_argument("--model", default="meta-llama/Llama-2-13b-chat-hf", help="HuggingFace model to use") parser.add_argument("--device", default="cuda", choices=["cuda", "cpu"], help="Device to use for training") parser.add_argument("--num-layers", type=int, default=41, help="Number of layers to train probes for") parser.add_argument("--no-auth", action="store_true", help="Don't use authentication token") args = parser.parse_args() print(f""" โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ LLM Probe Training System โ•‘ โ•‘ โ•‘ โ•‘ Model: {args.model:50s} โ•‘ โ•‘ Device: {args.device:49s} โ•‘ โ•‘ Probe Type: {args.probe_type:45s} โ•‘ โ•‘ Layers: {args.num_layers:49d} โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• """) start_time = time.time() try: # Initialize trainer trainer = ProbeTrainer( model_name=args.model, device=args.device, use_auth_token=not args.no_auth ) # Train probes if args.probe_type == "both": print("\n๐Ÿš€ Training both reading and controlling probes...") reading_results = trainer.train_probes("reading", args.num_layers) controlling_results = trainer.train_probes("controlling", args.num_layers) elif args.probe_type == "reading": reading_results = trainer.train_probes("reading", args.num_layers) else: controlling_results = trainer.train_probes("controlling", args.num_layers) elapsed_time = time.time() - start_time print(f"\nโฑ๏ธ Total training time: {elapsed_time/60:.2f} minutes") print("โœ… Training completed successfully!") except KeyboardInterrupt: print("\n\nโš ๏ธ Training interrupted by user") sys.exit(1) except Exception as e: print(f"\nโŒ FATAL ERROR: {e}") import traceback traceback.print_exc() sys.exit(1) if __name__ == "__main__": main()