Spaces:
Runtime error
Runtime error
Jingxiang Mo
commited on
Commit
·
bde6562
1
Parent(s):
782aff2
Added deliverable 3
Browse files- deliverables/MAIS 202 - Project Deliverable 3.pdf +0 -0
- test.py +147 -0
deliverables/MAIS 202 - Project Deliverable 3.pdf
ADDED
|
Binary file (511 kB). View file
|
|
|
test.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import wikipediaapi as wk
|
| 5 |
+
from transformers import (
|
| 6 |
+
TokenClassificationPipeline,
|
| 7 |
+
AutoModelForTokenClassification,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
)
|
| 10 |
+
import torch
|
| 11 |
+
from transformers.pipelines import AggregationStrategy
|
| 12 |
+
from transformers import BertForQuestionAnswering
|
| 13 |
+
from transformers import BertTokenizer
|
| 14 |
+
|
| 15 |
+
# =====[ DEFINE PIPELINE ]===== #
|
| 16 |
+
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
| 17 |
+
def __init__(self, model, *args, **kwargs):
|
| 18 |
+
super().__init__(
|
| 19 |
+
model=AutoModelForTokenClassification.from_pretrained(model),
|
| 20 |
+
tokenizer=AutoTokenizer.from_pretrained(model),
|
| 21 |
+
*args,
|
| 22 |
+
**kwargs
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def postprocess(self, model_outputs):
|
| 26 |
+
results = super().postprocess(
|
| 27 |
+
model_outputs=model_outputs,
|
| 28 |
+
aggregation_strategy=AggregationStrategy.SIMPLE,
|
| 29 |
+
)
|
| 30 |
+
return np.unique([result.get("word").strip() for result in results])
|
| 31 |
+
|
| 32 |
+
# =====[ LOAD PIPELINE ]===== #
|
| 33 |
+
keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec"
|
| 34 |
+
extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel)
|
| 35 |
+
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
|
| 36 |
+
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
|
| 37 |
+
|
| 38 |
+
#TODO: add further preprocessing
|
| 39 |
+
def keyphrases_extraction(text: str) -> str:
|
| 40 |
+
keyphrases = extractor(text)
|
| 41 |
+
return keyphrases
|
| 42 |
+
|
| 43 |
+
def wikipedia_search(input: str) -> str:
|
| 44 |
+
input = input.replace("\n", " ")
|
| 45 |
+
keyphrases = keyphrases_extraction(input)
|
| 46 |
+
wiki = wk.Wikipedia('en')
|
| 47 |
+
|
| 48 |
+
try :
|
| 49 |
+
#TODO: add better extraction and search
|
| 50 |
+
keyphrase_index = 0
|
| 51 |
+
page = wiki.page(keyphrases[keyphrase_index])
|
| 52 |
+
|
| 53 |
+
while not ('.' in page.summary) or not page.exists():
|
| 54 |
+
keyphrase_index += 1
|
| 55 |
+
if keyphrase_index == len(keyphrases):
|
| 56 |
+
raise Exception
|
| 57 |
+
page = wiki.page(keyphrases[keyphrase_index])
|
| 58 |
+
return page.summary
|
| 59 |
+
except:
|
| 60 |
+
return "I cannot answer this question"
|
| 61 |
+
|
| 62 |
+
def answer_question(question):
|
| 63 |
+
|
| 64 |
+
context = wikipedia_search(question)
|
| 65 |
+
if context == "I cannot answer this question":
|
| 66 |
+
return context
|
| 67 |
+
|
| 68 |
+
# ======== Tokenize ========
|
| 69 |
+
# Apply the tokenizer to the input text, treating them as a text-pair.
|
| 70 |
+
input_ids = tokenizer.encode(question, context)
|
| 71 |
+
|
| 72 |
+
# Report how long the input sequence is. if longer than 512 tokens, make it shorter
|
| 73 |
+
while(len(input_ids) > 512):
|
| 74 |
+
input_ids.pop()
|
| 75 |
+
|
| 76 |
+
print('Query has {:,} tokens.\n'.format(len(input_ids)))
|
| 77 |
+
|
| 78 |
+
# ======== Set Segment IDs ========
|
| 79 |
+
# Search the input_ids for the first instance of the `[SEP]` token.
|
| 80 |
+
sep_index = input_ids.index(tokenizer.sep_token_id)
|
| 81 |
+
|
| 82 |
+
# The number of segment A tokens includes the [SEP] token istelf.
|
| 83 |
+
num_seg_a = sep_index + 1
|
| 84 |
+
|
| 85 |
+
# The remainder are segment B.
|
| 86 |
+
num_seg_b = len(input_ids) - num_seg_a
|
| 87 |
+
|
| 88 |
+
# Construct the list of 0s and 1s.
|
| 89 |
+
segment_ids = [0]*num_seg_a + [1]*num_seg_b
|
| 90 |
+
|
| 91 |
+
# There should be a segment_id for every input token.
|
| 92 |
+
assert len(segment_ids) == len(input_ids)
|
| 93 |
+
|
| 94 |
+
# ======== Evaluate ========
|
| 95 |
+
# Run our example through the model.
|
| 96 |
+
outputs = model(torch.tensor([input_ids]), # The tokens representing our input text.
|
| 97 |
+
token_type_ids=torch.tensor([segment_ids]), # The segment IDs to differentiate question from answer_text
|
| 98 |
+
return_dict=True)
|
| 99 |
+
|
| 100 |
+
start_scores = outputs.start_logits
|
| 101 |
+
end_scores = outputs.end_logits
|
| 102 |
+
|
| 103 |
+
# ======== Reconstruct Answer ========
|
| 104 |
+
# Find the tokens with the highest `start` and `end` scores.
|
| 105 |
+
answer_start = torch.argmax(start_scores)
|
| 106 |
+
answer_end = torch.argmax(end_scores)
|
| 107 |
+
|
| 108 |
+
# Get the string versions of the input tokens.
|
| 109 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
| 110 |
+
|
| 111 |
+
# Start with the first token.
|
| 112 |
+
answer = tokens[answer_start]
|
| 113 |
+
|
| 114 |
+
# Select the remaining answer tokens and join them with whitespace.
|
| 115 |
+
for i in range(answer_start + 1, answer_end + 1):
|
| 116 |
+
|
| 117 |
+
# If it's a subword token, then recombine it with the previous token.
|
| 118 |
+
if tokens[i][0:2] == '##':
|
| 119 |
+
answer += tokens[i][2:]
|
| 120 |
+
|
| 121 |
+
# Otherwise, add a space then the token.
|
| 122 |
+
else:
|
| 123 |
+
answer += ' ' + tokens[i]
|
| 124 |
+
|
| 125 |
+
return 'Answer: "' + answer + '"'
|
| 126 |
+
|
| 127 |
+
# =====[ DEFINE INTERFACE ]===== #'
|
| 128 |
+
title = "Azza Chatbot"
|
| 129 |
+
examples = [
|
| 130 |
+
["Where is the Eiffel Tower?"],
|
| 131 |
+
["What is the population of France?"]
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
demo = gr.Interface(
|
| 137 |
+
title = title,
|
| 138 |
+
|
| 139 |
+
fn=answer_question,
|
| 140 |
+
inputs = "text",
|
| 141 |
+
outputs = "text",
|
| 142 |
+
|
| 143 |
+
examples=examples,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
demo.launch(share=True)
|