Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import wikipediaapi as wk | |
| import wikipedia | |
| import openai | |
| from transformers import ( | |
| TokenClassificationPipeline, | |
| AutoModelForTokenClassification, | |
| AutoTokenizer, | |
| BertForQuestionAnswering, | |
| BertTokenizer, | |
| ) | |
| from transformers.pipelines import AggregationStrategy | |
| import torch | |
| from dotenv import load_dotenv | |
| # =====[ DEFINE PIPELINE ]===== # | |
| class KeyphraseExtractionPipeline(TokenClassificationPipeline): | |
| def __init__(self, model, *args, **kwargs): | |
| super().__init__( | |
| model=AutoModelForTokenClassification.from_pretrained(model), | |
| tokenizer=AutoTokenizer.from_pretrained(model), | |
| *args, | |
| **kwargs, | |
| ) | |
| def postprocess(self, model_outputs): | |
| results = super().postprocess( | |
| model_outputs=model_outputs, | |
| aggregation_strategy=AggregationStrategy.SIMPLE, | |
| ) | |
| return np.unique([result.get("word").strip() for result in results]) | |
| load_dotenv() | |
| openai.api_key = os.getenv("OPENAI_API_KEY") | |
| # =====[ LOAD PIPELINE ]===== # | |
| keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec" | |
| extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel) | |
| model = BertForQuestionAnswering.from_pretrained( | |
| "bert-large-uncased-whole-word-masking-finetuned-squad" | |
| ) | |
| tokenizer = BertTokenizer.from_pretrained( | |
| "bert-large-uncased-whole-word-masking-finetuned-squad" | |
| ) | |
| def wikipedia_search(input: str) -> str: | |
| """Perform a Wikipedia search using keyphrases. | |
| Args: | |
| input (str): The input text. | |
| Returns: | |
| str: The summary of the Wikipedia page. | |
| """ | |
| keyphrases = extractor( input.replace("\n", " ")) | |
| wiki = wk.Wikipedia("en") | |
| try: | |
| if len(keyphrases) == 0: | |
| return "Can you add more details to your question?" | |
| query_suggestion = wikipedia.suggest(keyphrases[0]) | |
| if query_suggestion is not None: | |
| results = wikipedia.search(query_suggestion) | |
| else: | |
| results = wikipedia.search(keyphrases[0]) | |
| index = 0 | |
| page = wiki.page(results[index]) | |
| while not ("." in page.summary) or not page.exists(): | |
| index += 1 | |
| if index == len(results): | |
| raise Exception | |
| page = wiki.page(results[index]) | |
| return page.summary | |
| except: | |
| return "I cannot answer this question" | |
| def answer_question(question: str) -> str: | |
| """Answer the question using the context from the Wikipedia search. | |
| Args: | |
| question (str): The input question. | |
| Returns: | |
| str: The answer to the question. | |
| """ | |
| context = wikipedia_search(question) | |
| if (context == "I cannot answer this question") or ( | |
| context == "Can you add more details to your question?" | |
| ): | |
| return context | |
| # Tokenize and split input | |
| input_ids = tokenizer.encode(question, context) | |
| question_ids = input_ids[: input_ids.index(tokenizer.sep_token_id) + 1] | |
| # Report how long the input sequence is. if longer than 512 tokens divide it multiple sequences | |
| length_of_group = 512 - len(question_ids) | |
| input_ids_without_question = input_ids[ | |
| input_ids.index(tokenizer.sep_token_id) + 1 : | |
| ] | |
| input_ids_split = [] | |
| for group in range(len(input_ids_without_question) // length_of_group + 1): | |
| input_ids_split.append( | |
| question_ids | |
| + input_ids_without_question[ | |
| length_of_group * group : length_of_group * (group + 1) - 1 | |
| ] | |
| ) | |
| input_ids_split.append( | |
| question_ids | |
| + input_ids_without_question[ | |
| length_of_group | |
| * (len(input_ids_without_question) // length_of_group + 1) : len( | |
| input_ids_without_question | |
| ) | |
| - 1 | |
| ] | |
| ) | |
| scores = [] | |
| for input in input_ids_split: | |
| # set Segment IDs | |
| # Search the input_ids for the first instance of the `[SEP]` token. | |
| sep_index = input.index(tokenizer.sep_token_id) | |
| num_seg_a = sep_index + 1 | |
| segment_ids = [0] * num_seg_a + [1] * (len(input) - num_seg_a) | |
| assert len(segment_ids) == len(input) | |
| # evaulate the model | |
| outputs = model( | |
| torch.tensor([input]), | |
| token_type_ids=torch.tensor( | |
| [segment_ids] | |
| ), | |
| return_dict=True, | |
| ) | |
| start_scores = outputs.start_logits | |
| end_scores = outputs.end_logits | |
| max_start_score = torch.max(start_scores) | |
| max_end_score = torch.max(end_scores) | |
| print(max_start_score) | |
| print(max_end_score) | |
| # reconstruct answer from the tokens | |
| tokens = tokenizer.convert_ids_to_tokens(input_ids) | |
| answer = tokens[torch.argmax(start_scores)] | |
| for i in range(torch.argmax(start_scores) + 1, torch.argmax(end_scores) + 1): | |
| if tokens[i][0:2] == "##": | |
| answer += tokens[i][2:] | |
| else: | |
| answer += " " + tokens[i] | |
| scores.append((max_start_score, max_end_score, answer)) | |
| # Compare scores for answers found and each paragraph and pick the most relevant. | |
| answer = max(scores, key=lambda x: x[0] + x[1])[2] | |
| response = openai.Completion.create( | |
| model="text-davinci-003", | |
| prompt="Answer the question " + question + "using this answer: " + answer, | |
| max_tokens=3000, | |
| ) | |
| return response.choices[0].text.replace("\n\n", " ") | |
| # =====[ DEFINE INTERFACE ]===== #' | |
| title = "Azza - Grounded Q/A Conversational Agent 🤖" | |
| examples = [["Where is the Eiffel Tower?"], ["What is the population of France?"]] | |
| demo = gr.Interface( | |
| title=title, | |
| fn=answer_question, | |
| inputs="text", | |
| outputs="text", | |
| examples=examples, | |
| allow_flagging="never", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |