File size: 95,054 Bytes
82bf89e 268b0d4 82bf89e 268b0d4 82bf89e 268b0d4 82bf89e 268b0d4 82bf89e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 |
import datetime
import streamlit as st
import base64
import uuid
import time
from langchain_core.messages import HumanMessage, ToolMessage
from services.ai_service import get_response_stream
from services.mcp_service import run_agent
from services.chat_service import get_current_chat, _append_message_to_session
from services.export_service import export_chat_to_markdown, export_chat_to_json
from services.logging_service import get_logger
from services.task_monitor import get_task_monitor
from utils.async_helpers import run_async
from utils.ai_prompts import make_system_prompt, make_main_prompt
import ui_components.sidebar_components as sd_compents
from ui_components.main_components import display_tool_executions
from config import DEFAULT_MAX_TOKENS, DEFAULT_TEMPERATURE
import traceback
def replace_citation(match, citation_to_doc, doc_id_to_info):
"""Replace citation markers with formatted citations"""
citation_num = int(match.group(1))
if citation_num in citation_to_doc:
doc_id = citation_to_doc[citation_num]
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
return f"([{citation_num}]({doc_info.get('url', '#')} \"{title}\"))"
return match.group(0)
def replace_footnote_citation(match, citation_to_doc, doc_id_to_info):
"""Replace footnote citation markers with formatted citations"""
citation_num = int(match.group(1))
if citation_num in citation_to_doc:
doc_id = citation_to_doc[citation_num]
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
return f"([{citation_num}]({doc_info.get('url', '#')} \"{title}\"))"
return match.group(0)
def replace_document_citation(match, citation_to_doc, doc_id_to_info):
"""Replace document citation markers with formatted citations"""
citation_num = int(match.group(1))
if citation_num in citation_to_doc:
doc_id = citation_to_doc[citation_num]
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
return f"([{citation_num}]({doc_info.get('url', '#')} \"{title}\"))"
return match.group(0)
def extract_bio_final_answer(raw: str) -> str | None:
"""
Extract the final answer from bio_qa_stream_chat ToolMessage text marked with
'Bio-QA-final-Answer:' (note the Chinese full-width colon).
Compatible with two scenarios:
A) SSE stream: Multiple lines containing 'data: {...}' JSON
B) Plain text/code blocks: First appears ```bio-...``` code block, final answer appears at the end
Returns plain text answer; returns None if not found.
"""
if not raw:
return None
marker = "Bio-QA-final-Answer:"
# --- Scenario A: SSE line stream (contains 'data:')
if "data:" in raw:
final = []
for line in raw.splitlines():
line = line.strip()
if not line.startswith("data: "):
continue
# Parse JSON
try:
import json
data = json.loads(line[6:])
except Exception:
continue
if data.get("type") == "result":
content = str(data.get("content", ""))
if content.startswith(marker):
# Remove marker
final_text = content[len(marker):].strip()
final.append(final_text)
elif data.get("type") == "done":
# End flag, exit directly
break
if final:
# Use the last occurrence (more stable)
return final[-1].strip()
# --- Scenario B: Plain text (does not contain 'data:'), directly find marker
idx = raw.rfind(marker)
if idx != -1:
final_text = raw[idx + len(marker):].strip()
# Remove possible code fence or extra backticks that might wrap it
if final_text.startswith("```"):
# Remove the first code fence
final_text = final_text.lstrip("`")
# Also simply remove trailing extra backticks
final_text = final_text.rstrip("`").strip()
return final_text or None
return None
def extract_review_final_report(raw: str) -> str | None:
"""
Extract the final report content from review_generate ToolMessage text marked with
'Final_report\n'.
Compatible with two scenarios:
A) SSE stream: Multiple lines containing 'data: {...}' JSON
B) Plain text: Directly find content after Final_report\n marker
Returns plain text report; returns None if not found.
"""
if not raw:
return None
marker = "Final_report\n"
# --- Scenario A: SSE line stream (contains 'data:')
if "data:" in raw:
final_content = []
found_marker = False
for line in raw.splitlines():
line = line.strip()
if not line.startswith("data: "):
continue
# Parse JSON
try:
import json
data = json.loads(line[6:])
except Exception:
continue
if data.get("type") == "result":
content = str(data.get("content", ""))
if content == marker:
found_marker = True
continue
elif found_marker:
# Collect all content after marker
final_content.append(content)
elif data.get("type") == "done":
# End flag, exit directly
break
if final_content:
return "".join(final_content).strip()
# --- Scenario B: Plain text (does not contain 'data:'), directly find marker
idx = raw.find(marker)
if idx != -1:
final_text = raw[idx + len(marker):].strip()
# Remove possible code fence or extra backticks that might wrap it
if final_text.startswith("```"):
# Remove the first code fence
final_text = final_text.lstrip("`")
# Also simply remove trailing extra backticks
final_text = final_text.rstrip("`").strip()
return final_text or None
return None
def create_download_button(content: str, filename: str, file_type: str = "md", tool_type: str = "literature_review"):
"""
Create a download button that supports downloading as Markdown or PDF format
Args:
content: Content to download
filename: Filename (without extension)
file_type: File type, 'md' or 'pdf'
tool_type: Tool type for appropriate filename generation
"""
# Ensure a unique key per button instance to avoid duplicate element IDs
counter = st.session_state.get("download_btn_counter", 0)
st.session_state["download_btn_counter"] = counter + 1
base_key = f"download_{tool_type}_{file_type}_{counter}"
# Add timestamp to filename
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Generate appropriate filename based on tool type
if tool_type == "bio_qa_stream_chat":
base_filename = "bio_qa_report"
elif tool_type == "review_generate":
base_filename = "literature_review"
else:
base_filename = filename
filename_with_timestamp = f"{base_filename}_{timestamp}"
if file_type == "md":
# Download as Markdown file
st.download_button(
label=f"📥 Download as Markdown",
data=content,
file_name=f"{filename_with_timestamp}.md",
mime="text/markdown",
help="Click to download report as Markdown format",
key=f"{base_key}_md"
)
elif file_type == "pdf":
try:
# Use reportlab with markdown parsing (no system dependencies)
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib.enums import TA_JUSTIFY, TA_LEFT
from io import BytesIO
import markdown
# Convert markdown to HTML first for better parsing
html_content = markdown.markdown(content, extensions=['tables', 'fenced_code'])
# Create PDF document
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4, rightMargin=72, leftMargin=72, topMargin=72, bottomMargin=18)
# Get styles
styles = getSampleStyleSheet()
# Create custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=30,
alignment=TA_LEFT
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=12,
spaceBefore=20,
alignment=TA_LEFT
)
body_style = ParagraphStyle(
'CustomBody',
parent=styles['Normal'],
fontSize=11,
spaceAfter=6,
alignment=TA_JUSTIFY
)
# Build PDF content
story = []
# Add title based on tool type
if tool_type == "bio_qa_stream_chat":
title = "Biological Q&A Report"
elif tool_type == "review_generate":
title = "Literature Review Report"
else:
title = "Report"
story.append(Paragraph(title, title_style))
story.append(Spacer(1, 12))
# Parse HTML content and convert to PDF elements
from bs4 import BeautifulSoup, NavigableString
soup = BeautifulSoup(html_content, 'html.parser')
def element_text_with_links(element) -> str:
parts = []
for child in element.children:
if isinstance(child, NavigableString):
parts.append(str(child))
elif getattr(child, 'name', None) == 'a':
href = child.get('href', '#')
text = child.get_text(strip=True)
parts.append(f'<link href="{href}">{text}</link>')
else:
# Fallback to text for other inline elements
parts.append(child.get_text(strip=False))
return ''.join(parts).strip()
for element in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'code', 'pre', 'blockquote', 'ul', 'ol', 'li']):
if element.name in ['h1', 'h2', 'h3']:
heading_text = element_text_with_links(element)
story.append(Paragraph(heading_text or element.get_text(), heading_style))
story.append(Spacer(1, 6))
elif element.name == 'p':
text = element_text_with_links(element)
if text.strip():
story.append(Paragraph(text, body_style))
elif element.name == 'code':
code_style = ParagraphStyle(
'CodeText',
parent=body_style,
fontName='Courier',
fontSize=10,
backColor='#f8f9fa'
)
story.append(Paragraph(element.get_text(), code_style))
elif element.name == 'pre':
pre_style = ParagraphStyle(
'PreText',
parent=body_style,
fontName='Courier',
fontSize=10,
backColor='#f8f9fa',
leftIndent=20
)
story.append(Paragraph(element.get_text(), pre_style))
story.append(Spacer(1, 6))
elif element.name == 'blockquote':
quote_style = ParagraphStyle(
'QuoteText',
parent=body_style,
leftIndent=20,
leftPadding=10,
borderWidth=1,
borderColor='#3498db',
borderPadding=5
)
quote_text = element_text_with_links(element)
story.append(Paragraph(quote_text or element.get_text(), quote_style))
story.append(Spacer(1, 6))
elif element.name in ['ul', 'ol']:
index = 0
for li in element.find_all('li', recursive=False):
index += 1
li_text = element_text_with_links(li)
bullet = '• ' if element.name == 'ul' else f'{index}. '
story.append(Paragraph(f'{bullet}{li_text}', body_style))
story.append(Spacer(1, 6))
# Generate PDF
doc.build(story)
pdf_bytes = buffer.getvalue()
buffer.close()
# Create download button
st.download_button(
label="📥 Download as PDF",
data=pdf_bytes,
file_name=f"{filename_with_timestamp}.pdf",
mime="application/pdf",
help="Click to download report as PDF format",
key=f"{base_key}_pdf"
)
except ImportError as e:
st.warning(f"⚠️ Cannot generate PDF: Missing required libraries. Please install reportlab and beautifulsoup4. Error: {str(e)}")
except Exception as e:
st.error(f"❌ Error generating PDF: {str(e)}")
def main():
# Initialize logger
logger = get_logger()
task_monitor = get_task_monitor()
with st.sidebar:
st.link_button("🚀 Parameter Extraction", "https://huggingface.co/spaces/jackkuo/Automated-Enzyme-Kinetics-Extractor", type="primary")
st.subheader("Chat History")
sd_compents.create_history_chat_container()
# ------------------------------------------------------------------ Chat Part
# Main chat interface
st.header("Chat with Agent")
messages_container = st.container(border=True, height=600)
# ------------------------------------------------------------------ Chat history
# Re-render previous messages
if st.session_state.get('current_chat_id'):
st.session_state["messages"] = get_current_chat(st.session_state['current_chat_id'])
tool_count = 0
# Debug: log message count
logger.log_system_status(f"Re-rendering {len(st.session_state['messages'])} messages for chat {st.session_state['current_chat_id']}")
# Load bio data for this chat if available
chat_id = st.session_state['current_chat_id']
bio_data_key = f"bio_data_{chat_id}"
bio_data = st.session_state.get(bio_data_key, {})
for m in st.session_state["messages"]:
# Debug: log message structure
has_tool = "tool" in m and m["tool"]
has_content = "content" in m and m["content"]
logger.log_system_status(f"Message: role={m.get('role')}, has_tool={has_tool}, has_content={has_content}")
with messages_container.chat_message(m["role"]):
# 先显示ToolMessage(如果有)
if "tool" in m and m["tool"]:
tool_count += 1
# Display ToolMessage in collapsible format
with st.expander(f"🔧 ToolMessage - {tool_count}", expanded=False):
st.code(m["tool"], language='yaml')
# 再显示content(如果有)
if "content" in m and m["content"]:
content_text = str(m["content"])
# Check if this is a bio final answer and restore citations
if (m["role"] == "assistant" and
bio_data.get('has_bio_final_answer') and
bio_data.get('bio_final_answer_content') == content_text):
# Restore bio data for citation processing
bio_search_data = bio_data.get('bio_search_data', [])
bio_citation_data = bio_data.get('bio_citation_data', [])
web_search_data = bio_data.get('web_search_data', [])
# Display found literature information
if bio_search_data or web_search_data:
total_bio_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in bio_search_data)
total_web_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in web_search_data)
if total_bio_docs > 0 and total_web_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers and {total_web_docs} web pages")
elif total_bio_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers")
else:
st.markdown(f"### 🌐 Analysis based on {total_web_docs} web pages")
st.markdown("### 🎯 Final Answer")
# Process citation markers in final answer
processed_answer = content_text
if bio_citation_data and (bio_search_data or web_search_data):
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Create citation number to docId mapping
citation_to_doc = {}
for citation in bio_citation_data:
citation_num = citation.get('citation')
doc_id = citation.get('docId')
citation_to_doc[citation_num] = doc_id
# Replace citation markers
import re
# First replace single citations
def replace_citation_local(match):
return replace_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[bio-rag-citation:(\d+)\]', replace_citation_local, processed_answer)
def replace_footnote_citation_local(match):
return replace_footnote_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[\^(\d+)\]', replace_footnote_citation_local, processed_answer)
def replace_document_citation_local(match):
return replace_document_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[document (\d+)\]', replace_document_citation_local, processed_answer)
# Remove bottom references section (since we display complete reference list below)
processed_answer = re.sub(r'\n\nReferences:.*$', '', processed_answer, flags=re.DOTALL)
# Then process consecutive citations, add separators
processed_answer = re.sub(r'\](\[)', r'], \1', processed_answer)
st.markdown(processed_answer)
# Display citation information
if bio_citation_data:
st.markdown(f"### 📖 References ({len(bio_citation_data)} citations)")
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Display citation list
for citation in bio_citation_data:
doc_id = citation.get('docId')
citation_num = citation.get('citation')
source = citation.get('source', '')
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
url = doc_info.get('url', '#')
if source == 'webSearch':
st.markdown(f"[{citation_num}] {title}. [Link]({url})")
else:
author = doc_info.get('author', 'N/A')
journal = doc_info.get('JournalInfo', 'N/A')
authors = author.split(', ')
if len(authors) > 3:
display_author = ', '.join(authors[:3]) + ' et al.'
else:
display_author = author
st.markdown(f"[{citation_num}] {display_author}. {title}. {journal}. [Link]({url})")
else:
st.markdown(f"[{citation_num}] Document ID: {doc_id}")
else:
# Normal content display
st.markdown(content_text)
# Check if this is a review report and add download buttons
if m["role"] == "assistant" and m["content"]:
# Try to detect if this is a literature review report
content_text = str(m["content"])
if ("Literature Review Report" in content_text or
"📚 Literature Review Report" in content_text or
len(content_text) > 500): # Assume long content might be a review report
# Add download buttons for review reports
st.markdown("---")
st.markdown("### 📥 Download Options")
col1, col2 = st.columns(2)
with col1:
create_download_button(content_text, "literature_review", "md", "bio_qa_stream_chat")
with col2:
create_download_button(content_text, "literature_review", "pdf", "bio_qa_stream_chat")
# ------------------------------------------------------------------ Chat input
user_text = st.chat_input("Ask a question or explore available MCP tools")
# ------------------------------------------------------------------ SideBar widgets
# Main sidebar widgets
sd_compents.create_sidebar_chat_buttons()
sd_compents.create_provider_select_widget()
sd_compents.create_advanced_configuration_widget()
sd_compents.create_mcp_connection_widget()
sd_compents.create_mcp_tools_widget()
# ------------------------------------------------------------------ Main Logic
if user_text is None: # nothing submitted yet
st.stop()
params = st.session_state.get('params')
if not (
params.get('api_key') or
( params.get('model_id') == 'Bedrock' and
params.get('region_name') and
params.get('aws_access_key') and
params.get('aws_secret_key')
)
):
err_mesg = "❌ Missing credentials: provide either an API key or complete AWS credentials."
_append_message_to_session({"role": "assistant", "content": err_mesg})
with messages_container.chat_message("assistant"):
st.markdown(err_mesg)
st.rerun()
# ------------------------------------------------------------------ handle question (if any text)
if user_text:
# Log user message
logger.log_chat_message("user", user_text, st.session_state.get('current_chat_id'))
user_text_dct = {"role": "user", "content": user_text}
_append_message_to_session(user_text_dct)
with messages_container.chat_message("user"):
st.markdown(user_text)
with st.spinner("Thinking…", show_time=True):
# Start monitoring long-running task
task_id = str(uuid.uuid4())
task_monitor.start_monitoring(
task_id,
f"MCP_Agent_Response_{st.session_state.get('current_chat_id', 'unknown')}",
st.session_state.get('current_chat_id')
)
start_time = time.time()
system_prompt = make_system_prompt()
main_prompt = make_main_prompt(user_text)
try:
# If agent is available, use it
if st.session_state.agent:
logger.log_system_status("Using MCP agent for response")
# 记录可用的MCP工具
available_tools = [tool.name for tool in st.session_state.tools]
logger.log_mcp_agent_usage("ReactAgent", available_tools, st.session_state.get('current_chat_id'))
response = run_async(run_agent(st.session_state.agent, user_text))
tool_output = None
tools_used_in_response = []
# Extract tool executions if available
if "messages" in response:
logger.log_system_status(f"Processing {len(response['messages'])} messages from agent response")
for msg in response["messages"]:
# Debug: log message type
msg_type = type(msg).__name__
logger.log_system_status(f"Processing message type: {msg_type}")
# Look for AIMessage with tool calls
if hasattr(msg, 'tool_calls') and msg.tool_calls:
logger.log_system_status(f"Found tool calls: {msg.tool_calls}")
for tool_call in msg.tool_calls:
tools_used_in_response.append(tool_call['name'])
# Log tool call
logger.log_mcp_tool_call(
tool_call['name'],
tool_call['args'],
st.session_state.get('current_chat_id')
)
# Find corresponding ToolMessage
tool_output = next(
(m.content for m in response["messages"]
if isinstance(m, ToolMessage) and
m.tool_call_id == tool_call['id']),
None
)
if tool_output:
# Log tool response
logger.log_mcp_tool_response(
tool_call['name'],
tool_output,
st.session_state.get('current_chat_id')
)
st.session_state.tool_executions.append({
"tool_name": tool_call['name'],
"input": tool_call['args'],
"output": tool_output,
"timestamp": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
})
elif hasattr(msg, 'name') and msg.name:
logger.log_system_status(f"Found ToolMessage: {msg.name}")
else:
logger.log_system_status(f"Message has no tool calls or name: {msg}")
# 记录实际使用的工具
if tools_used_in_response:
logger.log_mcp_agent_usage("Response", tools_used_in_response, st.session_state.get('current_chat_id'))
else:
logger.log_system_status("No MCP tools used in this response")
# Extract and display the response
output = ""
tool_count = 0
# Initialize bio QA data from session state or create new
chat_id = st.session_state.get('current_chat_id')
bio_data_key = f"bio_data_{chat_id}" if chat_id else "bio_data_default"
if bio_data_key not in st.session_state:
st.session_state[bio_data_key] = {
'bio_final_answer_content': "",
'has_bio_final_answer': False,
'review_final_report_content': "",
'has_review_final_report': False,
'bio_search_data': [],
'bio_citation_data': [],
'web_search_data': []
}
# Load existing data or initialize new
bio_data = st.session_state[bio_data_key]
bio_final_answer_content = bio_data['bio_final_answer_content']
has_bio_final_answer = bio_data['has_bio_final_answer']
review_final_report_content = bio_data['review_final_report_content']
has_review_final_report = bio_data['has_review_final_report']
bio_search_data = bio_data['bio_search_data']
bio_citation_data = bio_data['bio_citation_data']
web_search_data = bio_data['web_search_data']
if "messages" in response:
for msg in response["messages"]:
if isinstance(msg, HumanMessage):
continue # Skip human messages
elif hasattr(msg, 'name') and msg.name: # ToolMessage
tool_count += 1
with messages_container.chat_message("assistant"):
# Parse SSE stream data if it's a streaming tool response
if (msg.name == "bio_qa_stream_chat" or msg.name == "review_generate" or msg.name == "health_check") and "data:" in msg.content:
if msg.name == "bio_qa_stream_chat":
st.write("**🔬 Biological Q&A Results:**")
elif msg.name == "review_generate":
st.write("**📚 Literature Review Generation:**")
elif msg.name == "health_check":
st.write("**🏥 Health Check Results:**")
# Parse and display streaming content
lines = msg.content.split('\n')
handled_final_answer = False
handled_final_report = False
final_report_content = []
for line in lines:
if line.startswith('data: '):
try:
import json
data = json.loads(line[6:]) # Remove 'data: ' prefix
if data.get('type') == 'result':
content = data.get('content', '')
# Check if this is a final answer
if content.startswith("Bio-QA-final-Answer:") and not handled_final_answer:
# Extract final answer content
bio_final_answer_content = content.replace("Bio-QA-final-Answer:", "").strip()
# Save to session state
bio_data['bio_final_answer_content'] = bio_final_answer_content
bio_data['has_bio_final_answer'] = True
st.session_state[bio_data_key] = bio_data
# Set as main output
output = bio_final_answer_content
# Set flag to skip LLM processing
has_bio_final_answer = True
# Display final answer immediately in main conversation area
st.markdown("---")
# Display found literature information
if bio_search_data or web_search_data:
total_bio_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in bio_search_data)
total_web_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in web_search_data)
# total_docs = total_bio_docs + total_web_docs
if total_bio_docs > 0 and total_web_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers and {total_web_docs} web pages")
elif total_bio_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers")
else:
st.markdown(f"### 🌐 Analysis based on {total_web_docs} web pages")
st.markdown("### 🎯 Final Answer")
# Process citation markers in final answer
processed_answer = bio_final_answer_content
if bio_citation_data and (bio_search_data or web_search_data):
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Create citation number to docId mapping
citation_to_doc = {}
for citation in bio_citation_data:
citation_num = citation.get('citation')
doc_id = citation.get('docId')
citation_to_doc[citation_num] = doc_id
# Replace citation markers
import re
# First replace single citations
processed_answer = re.sub(r'\[bio-rag-citation:(\d+)\]', replace_citation, processed_answer)
processed_answer = re.sub(r'\[\^(\d+)\]', replace_footnote_citation, processed_answer)
processed_answer = re.sub(r'\[document (\d+)\]', replace_document_citation, processed_answer)
# Remove bottom references section (since we display complete reference list below)
processed_answer = re.sub(r'\n\nReferences:.*$', '', processed_answer, flags=re.DOTALL)
# Then process consecutive citations, add separators
processed_answer = re.sub(r'\](\[)', r'], \1', processed_answer)
st.markdown(processed_answer)
# Display citation information (moved below final answer)
if bio_citation_data:
st.markdown(f"### 📖 References ({len(bio_citation_data)} citations)")
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Display citation list, associate with literature info (standard reference format)
for citation in bio_citation_data:
doc_id = citation.get('docId')
citation_num = citation.get('citation')
source = citation.get('source', '')
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
url = doc_info.get('url', '#')
if source == 'webSearch':
# Web citation format: [number] title. [link](URL)
st.markdown(f"[{citation_num}] {title}. [Link]({url})")
else:
# PubMed literature citation format: [number] author. title. journal info. [link](URL)
author = doc_info.get('author', 'N/A')
journal = doc_info.get('JournalInfo', 'N/A')
# Process author info, only show first 3
authors = author.split(', ')
if len(authors) > 3:
display_author = ', '.join(authors[:3]) + ' et al.'
else:
display_author = author
st.markdown(f"[{citation_num}] {display_author}. {title}. {journal}. [Link]({url})")
else:
st.markdown(f"[{citation_num}] Document ID: {doc_id}")
# Build complete content for download (including references)
complete_content = ""
# Add analysis information
if bio_search_data or web_search_data:
total_bio_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in bio_search_data)
total_web_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in web_search_data)
if total_bio_docs > 0 and total_web_docs > 0:
complete_content += f"### 📚 Analysis based on {total_bio_docs} scientific papers and {total_web_docs} web pages\n\n"
elif total_bio_docs > 0:
complete_content += f"### 📚 Analysis based on {total_bio_docs} scientific papers\n\n"
else:
complete_content += f"### 🌐 Analysis based on {total_web_docs} web pages\n\n"
# Add final answer
complete_content += "### 🎯 Final Answer\n\n"
complete_content += processed_answer + "\n\n"
# Add references
if bio_citation_data:
complete_content += f"### 📖 References ({len(bio_citation_data)} citations)\n\n"
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add citation list to complete content
for citation in bio_citation_data:
doc_id = citation.get('docId')
citation_num = citation.get('citation')
source = citation.get('source', '')
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
url = doc_info.get('url', '#')
if source == 'webSearch':
complete_content += f"[{citation_num}] {title}. [Link]({url})\n\n"
else:
author = doc_info.get('author', 'N/A')
journal = doc_info.get('JournalInfo', 'N/A')
authors = author.split(', ')
if len(authors) > 3:
display_author = ', '.join(authors[:3]) + ' et al.'
else:
display_author = author
complete_content += f"[{citation_num}] {display_author}. {title}. {journal}. [Link]({url})\n\n"
else:
complete_content += f"[{citation_num}] Document ID: {doc_id}\n\n"
# Add download buttons for Bio QA final answer (with complete content)
st.markdown("---")
st.markdown("### 📥 Download Options")
col1, col2 = st.columns(2)
with col1:
create_download_button(complete_content, "bio_qa_report", "md", "bio_qa_stream_chat")
with col2:
create_download_button(complete_content, "bio_qa_report", "pdf", "bio_qa_stream_chat")
# Save complete content to session history
_append_message_to_session({'role': 'assistant', 'content': complete_content})
# Force immediate rerender so Download Options appear without needing a new interaction
st.rerun()
handled_final_answer = True
# Check if this is a final report marker
elif content == "Final_report\n" and not handled_final_report:
handled_final_report = True
# Start collecting final report content
continue
elif handled_final_report:
# Collect final report content
final_report_content.append(content)
else:
# Try to parse JSON data and store
try:
import json
json_data = json.loads(content)
if json_data.get("type") == "search" and json_data.get("handler") == "QASearch":
handler_param = json_data.get('handlerParam', {})
source = handler_param.get('source', '')
if source == 'pubmed':
bio_search_data.append(json_data)
# Save to session state
bio_data['bio_search_data'] = bio_search_data
st.session_state[bio_data_key] = bio_data
st.write(f"🔍 Found {len(handler_param.get('bioDocs', []))} relevant papers")
elif source == 'webSearch':
web_search_data.append(json_data)
# Save to session state
bio_data['web_search_data'] = web_search_data
st.session_state[bio_data_key] = bio_data
st.write(f"🌐 Found {len(handler_param.get('bioDocs', []))} relevant web pages")
elif isinstance(json_data, list) and len(json_data) > 0 and "source" in json_data[0] and "citation" in json_data[0]:
# This is citation data
bio_citation_data.extend(json_data)
# Save to session state
bio_data['bio_citation_data'] = bio_citation_data
st.session_state[bio_data_key] = bio_data
st.write(f"📝 Generated citation information, {len(json_data)} citations total")
else:
st.write(content)
except json.JSONDecodeError:
# If not JSON, display content normally
st.write(content)
elif data.get('type') == 'done':
st.success("✅ Answer completed")
except json.JSONDecodeError:
continue
# Process collected final report content
if handled_final_report and final_report_content:
review_final_report_content = "".join(final_report_content).strip()
# Always display ToolMessage (collapsible)
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
# Display final report in main conversation area
with messages_container.chat_message("assistant"):
st.markdown("---")
st.markdown("### 📚 Literature Review Report")
st.markdown(review_final_report_content)
# Add download buttons to main conversation area (persistent)
st.markdown("---")
st.markdown("### 📥 Download Options")
col1, col2 = st.columns(2)
with col1:
create_download_button(review_final_report_content, "literature_review", "md", "review_generate")
with col2:
create_download_button(review_final_report_content, "literature_review", "pdf", "review_generate")
# Set flags and output
has_review_final_report = True
output = review_final_report_content
# Save final report to session history with download buttons info
_append_message_to_session({'role': 'assistant', 'content': review_final_report_content})
# Also save the original ToolMessage for reference
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
# Force immediate rerender so Download Options appear without needing a new interaction
st.rerun()
else:
# Save tool message to session history
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
else:
# For non-streaming or non-SSE returned tool messages, prioritize parsing bio_qa_stream_chat final answer
if msg.name == "bio_qa_stream_chat":
# Try to extract search data
try:
import json
import re
# Find JSON data blocks
json_matches = re.findall(r'```bio-chat-agent-task\n(.*?)\n```', msg.content, re.DOTALL)
for json_str in json_matches:
try:
json_data = json.loads(json_str)
if json_data.get("type") == "search" and json_data.get("handler") == "QASearch":
handler_param = json_data.get('handlerParam', {})
source = handler_param.get('source', '')
if source == 'pubmed':
bio_search_data.append(json_data)
# Save to session state
bio_data['bio_search_data'] = bio_search_data
st.session_state[bio_data_key] = bio_data
elif source == 'webSearch':
web_search_data.append(json_data)
# Save to session state
bio_data['web_search_data'] = web_search_data
st.session_state[bio_data_key] = bio_data
except json.JSONDecodeError:
continue
# Find citation data blocks
citation_matches = re.findall(r'```bio-resource-lookup\n(.*?)\n```', msg.content, re.DOTALL)
for citation_str in citation_matches:
try:
citation_data = json.loads(citation_str)
if isinstance(citation_data, list) and len(citation_data) > 0 and "source" in citation_data[0] and "citation" in citation_data[0]:
bio_citation_data.extend(citation_data)
# Save to session state
bio_data['bio_citation_data'] = bio_citation_data
st.session_state[bio_data_key] = bio_data
except json.JSONDecodeError:
continue
except Exception:
pass
extracted = extract_bio_final_answer(msg.content)
if extracted:
# Always display ToolMessage (collapsible)
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
# Then display final answer in main conversation area
with messages_container.chat_message("assistant"):
# Display found literature information
if bio_search_data or web_search_data:
total_bio_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in bio_search_data)
total_web_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in web_search_data)
total_docs = total_bio_docs + total_web_docs
if total_bio_docs > 0 and total_web_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers and {total_web_docs} web pages")
elif total_bio_docs > 0:
st.markdown(f"### 📚 Analysis based on {total_bio_docs} scientific papers")
else:
st.markdown(f"### 🌐 Analysis based on {total_web_docs} web pages")
st.markdown("### 🎯 Final Answer")
# Process citation markers in final answer
processed_answer = extracted
if bio_citation_data and (bio_search_data or web_search_data):
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Create citation number to docId mapping
citation_to_doc = {}
for citation in bio_citation_data:
citation_num = citation.get('citation')
doc_id = citation.get('docId')
citation_to_doc[citation_num] = doc_id
# Replace citation markers
import re
# First replace single citations
def replace_citation_local2(match):
return replace_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[bio-rag-citation:(\d+)\]', replace_citation_local2, processed_answer)
def replace_footnote_citation_local2(match):
return replace_footnote_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[\^(\d+)\]', replace_footnote_citation_local2, processed_answer)
def replace_document_citation_local2(match):
return replace_document_citation(match, citation_to_doc, doc_id_to_info)
processed_answer = re.sub(r'\[document (\d+)\]', replace_document_citation_local2, processed_answer)
# Remove bottom references section (since we display complete reference list below)
processed_answer = re.sub(r'\n\nReferences:.*$', '', processed_answer, flags=re.DOTALL)
# Then process consecutive citations, add separators
processed_answer = re.sub(r'\](\[)', r'], \1', processed_answer)
st.markdown(processed_answer)
# Display citation information (moved below final answer)
if bio_citation_data:
st.markdown(f"### 📖 References ({len(bio_citation_data)} citations)")
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Display citation list, associate with literature info (standard reference format)
for citation in bio_citation_data:
doc_id = citation.get('docId')
citation_num = citation.get('citation')
source = citation.get('source', '')
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
url = doc_info.get('url', '#')
if source == 'webSearch':
# Web citation format: [number] title. [link](URL)
st.markdown(f"[{citation_num}] {title}. [Link]({url})")
else:
# PubMed literature citation format: [number] author. title. journal info. [link](URL)
author = doc_info.get('author', 'N/A')
journal = doc_info.get('JournalInfo', 'N/A')
# Process author info, only show first 3
authors = author.split(', ')
if len(authors) > 3:
display_author = ', '.join(authors[:3]) + ' et al.'
else:
display_author = author
st.markdown(f"[{citation_num}] {display_author}. {title}. {journal}. [Link]({url})")
else:
st.markdown(f"[{citation_num}] Document ID: {doc_id}")
# Build complete formatted content for saving
complete_content = ""
# Add analysis information
if bio_search_data or web_search_data:
total_bio_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in bio_search_data)
total_web_docs = sum(len(data.get('handlerParam', {}).get('bioDocs', [])) for data in web_search_data)
if total_bio_docs > 0 and total_web_docs > 0:
complete_content += f"### 📚 Analysis based on {total_bio_docs} scientific papers and {total_web_docs} web pages\n\n"
elif total_bio_docs > 0:
complete_content += f"### 📚 Analysis based on {total_bio_docs} scientific papers\n\n"
else:
complete_content += f"### 🌐 Analysis based on {total_web_docs} web pages\n\n"
# Add final answer
complete_content += "### 🎯 Final Answer\n\n"
complete_content += processed_answer + "\n\n"
# Add references
if bio_citation_data:
complete_content += f"### 📖 References ({len(bio_citation_data)} citations)\n\n"
# Create docId to literature info mapping
doc_id_to_info = {}
# Add PubMed data
for search_data in bio_search_data:
bio_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in bio_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add web search data
for search_data in web_search_data:
web_docs = search_data.get('handlerParam', {}).get('bioDocs', [])
for doc in web_docs:
doc_id_to_info[doc.get('docId')] = doc
# Add citation list to complete content
for citation in bio_citation_data:
doc_id = citation.get('docId')
citation_num = citation.get('citation')
source = citation.get('source', '')
if doc_id in doc_id_to_info:
doc_info = doc_id_to_info[doc_id]
title = doc_info.get('title', 'N/A')
url = doc_info.get('url', '#')
if source == 'webSearch':
complete_content += f"[{citation_num}] {title}. [Link]({url})\n\n"
else:
author = doc_info.get('author', 'N/A')
journal = doc_info.get('JournalInfo', 'N/A')
authors = author.split(', ')
if len(authors) > 3:
display_author = ', '.join(authors[:3]) + ' et al.'
else:
display_author = author
complete_content += f"[{citation_num}] {display_author}. {title}. {journal}. [Link]({url})\n\n"
else:
complete_content += f"[{citation_num}] Document ID: {doc_id}\n\n"
# Override output and bio_final_answer_content for session recording
output = complete_content
bio_final_answer_content = complete_content
# Set flag to skip LLM processing
has_bio_final_answer = True
# Add download buttons for Bio QA final answer (with complete content)
st.markdown("---")
st.markdown("### 📥 Download Options")
col1, col2 = st.columns(2)
with col1:
create_download_button(complete_content, "bio_qa_report", "md", "bio_qa_stream_chat")
with col2:
create_download_button(complete_content, "bio_qa_report", "pdf", "bio_qa_stream_chat")
# Save ToolMessage first, then complete formatted content
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
_append_message_to_session({'role': 'assistant', 'content': complete_content})
# Force immediate rerender so Download Options appear right away
st.rerun()
# Debug: log ToolMessage save
logger.log_system_status(f"Saved ToolMessage for bio_qa_stream_chat: {len(msg.content)} characters")
logger.log_system_status(f"Current chat has {len(st.session_state.get('messages', []))} messages")
else:
# Fallback: if final answer not parsed, display tool message in original way
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
elif msg.name == "review_generate":
# Try to extract final report
extracted_report = extract_review_final_report(msg.content)
if extracted_report:
# Always display ToolMessage (collapsible)
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
# Display final report in main conversation area
with messages_container.chat_message("assistant"):
st.markdown("---")
st.markdown("### 📚 Literature Review Report")
st.markdown(extracted_report)
# Add download buttons to main conversation area (persistent)
st.markdown("---")
st.markdown("### 📥 Download Options")
col1, col2 = st.columns(2)
with col1:
create_download_button(extracted_report, "literature_review", "md", "review_generate")
with col2:
create_download_button(extracted_report, "literature_review", "pdf", "review_generate")
# Override output and review_final_report_content for session recording
output = extracted_report
review_final_report_content = extracted_report
# Set flag to skip LLM processing
has_review_final_report = True
# Save "assistant final report" to session history (instead of writing tool original text to tool field)
_append_message_to_session({'role': 'assistant', 'content': extracted_report})
# Also save the original ToolMessage for reference
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
# Force immediate rerender so Download Options appear right away
st.rerun()
else:
# Fallback: if final report not parsed, display tool message in original way
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
else:
# Other tools remain the same, but use collapsible display
with st.expander(f"🔧 ToolMessage - {tool_count} ({msg.name})", expanded=False):
st.code(msg.content, language='yaml')
_append_message_to_session({'role': 'assistant', 'content': '', 'tool': msg.content})
else: # AIMessage
# If there's a final answer or final report, skip LLM response
if not has_bio_final_answer and not has_review_final_report and hasattr(msg, "content") and msg.content:
with messages_container.chat_message("assistant"):
output = str(msg.content)
st.markdown(output)
# Ensure final answer or final report is correctly saved
if not output and bio_final_answer_content:
output = bio_final_answer_content
if not output and review_final_report_content:
output = review_final_report_content
# Initialize response_dct
response_dct = None
# If there's a final answer or final report, use it directly as response, no need to save additional assistant message
if has_bio_final_answer or has_review_final_report:
# Final answer or final report has already been saved to session history during processing
# But we need to trigger UI re-render to show the saved content
if has_bio_final_answer:
response_dct = {"role": "assistant", "content": bio_final_answer_content}
logger.log_chat_message("assistant", bio_final_answer_content, st.session_state.get('current_chat_id'), has_tool=True)
elif has_review_final_report:
response_dct = {"role": "assistant", "content": review_final_report_content}
logger.log_chat_message("assistant", review_final_report_content, st.session_state.get('current_chat_id'), has_tool=True)
else:
response_dct = {"role": "assistant", "content": output}
# Log assistant message
logger.log_chat_message("assistant", output, st.session_state.get('current_chat_id'))
# Fall back to regular stream response if agent not available
else:
st.warning("You are not connect to MCP servers!")
response_stream = get_response_stream(
main_prompt,
llm_provider=st.session_state['params']['model_id'],
system=system_prompt,
temperature=st.session_state['params'].get('temperature', DEFAULT_TEMPERATURE),
max_tokens=st.session_state['params'].get('max_tokens', DEFAULT_MAX_TOKENS),
)
with messages_container.chat_message("assistant"):
response = st.write_stream(response_stream)
response_dct = {"role": "assistant", "content": response}
except Exception as e:
# Stop monitoring and log error
task_monitor.stop_monitoring(task_id)
duration = time.time() - start_time
response = f"⚠️ Something went wrong: {str(e)}"
logger.log_error(
"MCP_Agent_Error",
str(e),
{
'chat_id': st.session_state.get('current_chat_id'),
'duration_seconds': duration,
'user_text': user_text
}
)
st.error(response)
st.code(traceback.format_exc(), language="python")
st.stop()
finally:
# Stop monitoring
task_monitor.stop_monitoring(task_id)
# Add assistant message to chat history (only if not already saved)
if response_dct is not None:
# Check if this is a final answer/report that was already saved during processing
if (has_bio_final_answer or has_review_final_report) and response_dct.get('content'):
# Don't save again, just trigger UI re-render
pass
else:
_append_message_to_session(response_dct)
display_tool_executions() |