Spaces:
Sleeping
Sleeping
upload
Browse files- .gitignore +17 -0
- app.py +110 -0
- readme.txt +14 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.pyd
|
| 5 |
+
.Python
|
| 6 |
+
.env
|
| 7 |
+
.venv
|
| 8 |
+
env/
|
| 9 |
+
venv/
|
| 10 |
+
.DS_Store
|
| 11 |
+
*.log
|
| 12 |
+
.pytest_cache/
|
| 13 |
+
.coverage
|
| 14 |
+
htmlcov/
|
| 15 |
+
dist/
|
| 16 |
+
build/
|
| 17 |
+
*.egg-info/
|
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - Hugging Face Spaces version
|
| 2 |
+
import os
|
| 3 |
+
from fastapi import FastAPI, HTTPException
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
import chromadb
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
# Database path
|
| 11 |
+
DB_PATH = "./medqa_db"
|
| 12 |
+
|
| 13 |
+
# Initialize
|
| 14 |
+
print(f"Loading database from: {DB_PATH}")
|
| 15 |
+
client = chromadb.PersistentClient(path=DB_PATH)
|
| 16 |
+
collection = client.get_collection("medqa")
|
| 17 |
+
print(f"Loading MedCPT model...")
|
| 18 |
+
model = SentenceTransformer('ncbi/MedCPT-Query-Encoder')
|
| 19 |
+
print("Initialization complete!")
|
| 20 |
+
|
| 21 |
+
# FastAPI app
|
| 22 |
+
app = FastAPI(title="MedQA Search API")
|
| 23 |
+
|
| 24 |
+
app.add_middleware(
|
| 25 |
+
CORSMiddleware,
|
| 26 |
+
allow_origins=["*"],
|
| 27 |
+
allow_credentials=True,
|
| 28 |
+
allow_methods=["*"],
|
| 29 |
+
allow_headers=["*"],
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
class SearchRequest(BaseModel):
|
| 33 |
+
query: str
|
| 34 |
+
num_results: int = 3
|
| 35 |
+
|
| 36 |
+
class SearchResponse(BaseModel):
|
| 37 |
+
results: list[dict]
|
| 38 |
+
|
| 39 |
+
@app.get("/")
|
| 40 |
+
async def root():
|
| 41 |
+
return {
|
| 42 |
+
"message": "MedQA Search API - Hugging Face Version",
|
| 43 |
+
"status": "running",
|
| 44 |
+
"collection_count": collection.count()
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
@app.post("/search_medqa", response_model=SearchResponse)
|
| 48 |
+
async def search_medqa(request: SearchRequest):
|
| 49 |
+
"""Search MedQA database for similar USMLE questions"""
|
| 50 |
+
try:
|
| 51 |
+
embedding = model.encode(request.query).tolist()
|
| 52 |
+
results = collection.query(
|
| 53 |
+
query_embeddings=[embedding],
|
| 54 |
+
n_results=request.num_results
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
formatted_results = []
|
| 58 |
+
for i in range(len(results['documents'][0])):
|
| 59 |
+
formatted_results.append({
|
| 60 |
+
"example_number": i + 1,
|
| 61 |
+
"question": results['documents'][0][i],
|
| 62 |
+
"answer": results['metadatas'][0][i].get('answer', 'N/A'),
|
| 63 |
+
"distance": results['distances'][0][i] if 'distances' in results else None
|
| 64 |
+
})
|
| 65 |
+
|
| 66 |
+
return SearchResponse(results=formatted_results)
|
| 67 |
+
except Exception as e:
|
| 68 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 69 |
+
|
| 70 |
+
# Gradio interface (optional - gives you a web UI)
|
| 71 |
+
def search_interface(query: str, num_results: int = 3):
|
| 72 |
+
"""Simple web interface for testing"""
|
| 73 |
+
try:
|
| 74 |
+
embedding = model.encode(query).tolist()
|
| 75 |
+
results = collection.query(
|
| 76 |
+
query_embeddings=[embedding],
|
| 77 |
+
n_results=num_results
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
output = ""
|
| 81 |
+
for i in range(len(results['documents'][0])):
|
| 82 |
+
output += f"\n{'='*60}\n"
|
| 83 |
+
output += f"Example {i+1}\n"
|
| 84 |
+
output += f"{'='*60}\n"
|
| 85 |
+
output += results['documents'][0][i] + "\n"
|
| 86 |
+
output += f"\nAnswer: {results['metadatas'][0][i].get('answer', 'N/A')}\n"
|
| 87 |
+
output += f"Similarity: {1 - results['distances'][0][i]:.3f}\n"
|
| 88 |
+
|
| 89 |
+
return output
|
| 90 |
+
except Exception as e:
|
| 91 |
+
return f"Error: {str(e)}"
|
| 92 |
+
|
| 93 |
+
# Create Gradio interface
|
| 94 |
+
demo = gr.Interface(
|
| 95 |
+
fn=search_interface,
|
| 96 |
+
inputs=[
|
| 97 |
+
gr.Textbox(label="Medical Topic or Clinical Scenario", placeholder="e.g., hyponatremia"),
|
| 98 |
+
gr.Slider(1, 5, value=3, step=1, label="Number of Examples")
|
| 99 |
+
],
|
| 100 |
+
outputs=gr.Textbox(label="Similar USMLE Questions", lines=20),
|
| 101 |
+
title="MedQA Search - USMLE Question Database",
|
| 102 |
+
description="Search for similar USMLE Step 1 questions using semantic similarity"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Mount Gradio app and FastAPI
|
| 106 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
import uvicorn
|
| 110 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
readme.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: MedQA Search
|
| 3 |
+
emoji: 🏥
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# MedQA Search API
|
| 13 |
+
|
| 14 |
+
USMLE Step 1 question database with semantic search.
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
chromadb==0.4.18
|
| 4 |
+
sentence-transformers==2.2.2
|
| 5 |
+
pydantic==2.5.0
|
| 6 |
+
torch==2.1.0
|
| 7 |
+
numpy==1.24.3
|