Spaces:
Runtime error
Runtime error
Update app1.py
Browse files
app1.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import functools
|
| 3 |
import os
|
| 4 |
import shutil
|
| 5 |
import sys
|
| 6 |
-
|
| 7 |
import git
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
import torch as torch
|
|
@@ -12,283 +11,150 @@ from PIL import Image
|
|
| 12 |
|
| 13 |
from gradio_imageslider import ImageSlider
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
normal_out_vis=None,
|
| 24 |
-
path_out_fp32=None,
|
| 25 |
-
path_out_vis=None,
|
| 26 |
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
return (
|
| 30 |
-
[normal_out_vis, path_out_vis],
|
| 31 |
-
[normal_out_vis, path_out_fp32, path_out_vis],
|
| 32 |
-
)
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
-
# )
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
pipe_out = pipe(
|
| 47 |
-
|
| 48 |
-
denoising_steps=
|
| 49 |
-
ensemble_size=
|
| 50 |
-
processing_res=
|
| 51 |
batch_size=0,
|
| 52 |
-
guidance_scale=
|
| 53 |
-
domain=
|
| 54 |
show_progress_bar=True,
|
| 55 |
)
|
| 56 |
|
| 57 |
-
depth_pred = pipe_out.depth_np
|
| 58 |
depth_colored = pipe_out.depth_colored
|
| 59 |
normal_colored = pipe_out.normal_colored
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
path_output_dir = os.path.splitext(path_input)[0] + "_output"
|
| 63 |
-
os.makedirs(path_output_dir, exist_ok=True)
|
| 64 |
|
| 65 |
-
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
| 66 |
-
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
| 67 |
-
normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
|
| 68 |
-
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
|
| 69 |
|
| 70 |
-
#np.save(path_out_fp32, depth_pred)
|
| 71 |
-
#Image.fromarray(normal_out_vis).save(normal_out_vis)
|
| 72 |
-
depth_colored.save(path_out_vis)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
[normal_out_vis, path_out_vis],
|
| 76 |
-
[normal_out_vis, path_out_fp32, path_out_vis],
|
| 77 |
-
)
|
| 78 |
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
title="Marigold Depth Estimation",
|
| 87 |
-
css="""
|
| 88 |
-
#download {
|
| 89 |
-
height: 118px;
|
| 90 |
-
}
|
| 91 |
-
.slider .inner {
|
| 92 |
-
width: 5px;
|
| 93 |
-
background: #FFF;
|
| 94 |
-
}
|
| 95 |
-
.viewport {
|
| 96 |
-
aspect-ratio: 4/3;
|
| 97 |
-
}
|
| 98 |
-
""",
|
| 99 |
-
) as demo:
|
| 100 |
-
gr.Markdown(
|
| 101 |
-
"""
|
| 102 |
-
<h1 align="center">GeoWizard</h1>
|
| 103 |
-
<p align="center">
|
| 104 |
-
<a title="Website" href="https://fuxiao0719.github.io/projects/geowizard/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 105 |
-
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
| 106 |
-
</a>
|
| 107 |
-
<a title="arXiv" href="https://arxiv.org/abs/2403.12013" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 108 |
-
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
| 109 |
-
</a>
|
| 110 |
-
<a title="Github" href="https://github.com/fuxiao0719/GeoWizard" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 111 |
-
<img src="https://img.shields.io/github/stars/fuxiao0719/GeoWizard" alt="badge-github-stars">
|
| 112 |
-
</a>
|
| 113 |
-
</p>
|
| 114 |
-
<p align="justify">
|
| 115 |
-
GeoWizard is a Wizard who spells 3D geometry from a single image.
|
| 116 |
-
Upload your image into the <b>left</b> side.
|
| 117 |
-
</p>
|
| 118 |
-
"""
|
| 119 |
-
)
|
| 120 |
|
|
|
|
| 121 |
with gr.Row():
|
| 122 |
-
with gr.Column():
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
maximum=20,
|
| 139 |
-
step=1,
|
| 140 |
-
value=10,
|
| 141 |
-
)
|
| 142 |
-
processing_res = gr.Radio(
|
| 143 |
-
[
|
| 144 |
-
("Native", 0),
|
| 145 |
-
("Recommended", 768),
|
| 146 |
-
],
|
| 147 |
-
label="Processing resolution",
|
| 148 |
-
value=768,
|
| 149 |
-
)
|
| 150 |
-
domain = gr.Radio(
|
| 151 |
-
[
|
| 152 |
-
("indoor", "indoor"),
|
| 153 |
-
("outdoor", "outdoor"),
|
| 154 |
-
("object", "object"),
|
| 155 |
-
],
|
| 156 |
-
label="scene type",
|
| 157 |
-
value='indoor',
|
| 158 |
-
)
|
| 159 |
-
input_output_16bit = gr.File(
|
| 160 |
-
label="Predicted depth (16-bit)",
|
| 161 |
-
visible=False,
|
| 162 |
-
)
|
| 163 |
-
input_output_fp32 = gr.File(
|
| 164 |
-
label="Predicted depth (32-bit)",
|
| 165 |
-
visible=False,
|
| 166 |
-
)
|
| 167 |
-
input_output_vis = gr.File(
|
| 168 |
-
label="Predicted depth (red-near, blue-far)",
|
| 169 |
-
visible=False,
|
| 170 |
-
)
|
| 171 |
-
with gr.Row():
|
| 172 |
-
submit_btn = gr.Button(value="Compute Depth", variant="primary")
|
| 173 |
-
clear_btn = gr.Button(value="Clear")
|
| 174 |
-
with gr.Column():
|
| 175 |
-
output_slider = ImageSlider(
|
| 176 |
-
label="Predicted depth (red-near, blue-far)",
|
| 177 |
-
type="filepath",
|
| 178 |
-
show_download_button=True,
|
| 179 |
-
show_share_button=True,
|
| 180 |
-
interactive=False,
|
| 181 |
-
elem_classes="slider",
|
| 182 |
-
position=0.25,
|
| 183 |
-
)
|
| 184 |
-
files = gr.Files(
|
| 185 |
-
label="Depth outputs",
|
| 186 |
-
elem_id="download",
|
| 187 |
-
interactive=False,
|
| 188 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain]
|
| 191 |
-
blocks_settings = blocks_settings_depth
|
| 192 |
-
map_id_to_default = {b._id: b.value for b in blocks_settings}
|
| 193 |
-
|
| 194 |
-
inputs = [
|
| 195 |
-
input_image,
|
| 196 |
-
ensemble_size,
|
| 197 |
-
denoise_steps,
|
| 198 |
-
processing_res,
|
| 199 |
-
domain,
|
| 200 |
-
input_output_16bit,
|
| 201 |
-
input_output_fp32,
|
| 202 |
-
input_output_vis,
|
| 203 |
-
|
| 204 |
-
]
|
| 205 |
-
outputs = [
|
| 206 |
-
submit_btn,
|
| 207 |
-
input_image,
|
| 208 |
-
output_slider,
|
| 209 |
-
files,
|
| 210 |
-
]
|
| 211 |
-
|
| 212 |
-
def submit_depth_fn(*args):
|
| 213 |
-
out = list(process_pipe(*args))
|
| 214 |
-
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
|
| 215 |
-
return out
|
| 216 |
-
|
| 217 |
-
submit_btn.click(
|
| 218 |
-
fn=submit_depth_fn,
|
| 219 |
-
inputs=inputs,
|
| 220 |
-
outputs=outputs,
|
| 221 |
-
concurrency_limit=1,
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def clear_fn():
|
| 226 |
-
out = []
|
| 227 |
-
for b in blocks_settings:
|
| 228 |
-
out.append(map_id_to_default[b._id])
|
| 229 |
-
out += [
|
| 230 |
-
gr.Button(interactive=True),
|
| 231 |
-
gr.Button(interactive=True),
|
| 232 |
-
gr.Image(value=None, interactive=True),
|
| 233 |
-
None, None, None, None, None, None, None,
|
| 234 |
-
]
|
| 235 |
-
return out
|
| 236 |
-
|
| 237 |
-
clear_btn.click(
|
| 238 |
-
fn=clear_fn,
|
| 239 |
-
inputs=[],
|
| 240 |
-
outputs=blocks_settings + [
|
| 241 |
-
submit_btn,
|
| 242 |
-
input_image,
|
| 243 |
-
input_output_16bit,
|
| 244 |
-
input_output_fp32,
|
| 245 |
-
input_output_vis,
|
| 246 |
-
output_slider,
|
| 247 |
-
files,
|
| 248 |
-
],
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
demo.queue(
|
| 252 |
-
api_open=False,
|
| 253 |
-
).launch(
|
| 254 |
-
server_name="0.0.0.0",
|
| 255 |
-
server_port=7860,
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
def main():
|
| 260 |
-
|
| 261 |
-
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
|
| 262 |
-
CHECKPOINT = "lemonaddie/Geowizard"
|
| 263 |
-
REPO_DIR = "geowizard"
|
| 264 |
-
|
| 265 |
-
if os.path.isdir(REPO_DIR):
|
| 266 |
-
shutil.rmtree(REPO_DIR)
|
| 267 |
-
|
| 268 |
-
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
|
| 269 |
-
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
|
| 270 |
-
|
| 271 |
-
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
| 272 |
-
|
| 273 |
-
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 274 |
-
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
| 275 |
-
|
| 276 |
-
try:
|
| 277 |
-
import xformers
|
| 278 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 279 |
-
except:
|
| 280 |
-
pass # run without xformers
|
| 281 |
-
|
| 282 |
-
try:
|
| 283 |
-
import xformers
|
| 284 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 285 |
-
except:
|
| 286 |
-
pass # run without xformers
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
|
| 292 |
-
if __name__ ==
|
| 293 |
-
|
| 294 |
|
|
|
|
|
|
|
| 1 |
import functools
|
| 2 |
import os
|
| 3 |
import shutil
|
| 4 |
import sys
|
|
|
|
| 5 |
import git
|
| 6 |
+
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
import torch as torch
|
|
|
|
| 11 |
|
| 12 |
from gradio_imageslider import ImageSlider
|
| 13 |
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
|
| 17 |
+
CHECKPOINT = "lemonaddie/Geowizard"
|
| 18 |
+
REPO_DIR = "geowizard"
|
| 19 |
+
|
| 20 |
+
if os.path.isdir(REPO_DIR):
|
| 21 |
+
shutil.rmtree(REPO_DIR)
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
|
| 24 |
+
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
| 27 |
|
| 28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
import xformers
|
| 33 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 34 |
+
except:
|
| 35 |
+
pass # run without xformers
|
|
|
|
| 36 |
|
| 37 |
+
pipe = pipe.to(device)
|
| 38 |
+
#run_demo_server(pipe)
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def depth_normal(img,
|
| 42 |
+
denoising_steps,
|
| 43 |
+
ensemble_size,
|
| 44 |
+
processing_res,
|
| 45 |
+
guidance_scale,
|
| 46 |
+
domain):
|
| 47 |
+
img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
| 48 |
pipe_out = pipe(
|
| 49 |
+
img,
|
| 50 |
+
denoising_steps=denoising_steps,
|
| 51 |
+
ensemble_size=ensemble_size,
|
| 52 |
+
processing_res=processing_res,
|
| 53 |
batch_size=0,
|
| 54 |
+
guidance_scale=guidance_scale,
|
| 55 |
+
domain=domain,
|
| 56 |
show_progress_bar=True,
|
| 57 |
)
|
| 58 |
|
|
|
|
| 59 |
depth_colored = pipe_out.depth_colored
|
| 60 |
normal_colored = pipe_out.normal_colored
|
| 61 |
+
|
| 62 |
+
return depth_colored, normal_colored
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
def run_demo():
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
| 70 |
+
button_secondary_background_fill="*neutral_100",
|
| 71 |
+
button_secondary_background_fill_hover="*neutral_200")
|
| 72 |
+
custom_css = '''#disp_image {
|
| 73 |
+
text-align: center; /* Horizontally center the content */
|
| 74 |
+
}'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
| 77 |
with gr.Row():
|
| 78 |
+
with gr.Column(scale=1):
|
| 79 |
+
gr.Markdown('# ' + _TITLE)
|
| 80 |
+
gr.Markdown(_DESCRIPTION)
|
| 81 |
+
with gr.Row(variant='panel'):
|
| 82 |
+
with gr.Column(scale=1):
|
| 83 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
|
| 84 |
+
|
| 85 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./files")
|
| 86 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
| 87 |
+
gr.Examples(
|
| 88 |
+
examples=example_fns,
|
| 89 |
+
inputs=[input_image],
|
| 90 |
+
# outputs=[input_image],
|
| 91 |
+
cache_examples=False,
|
| 92 |
+
label='Examples (click one of the images below to start)',
|
| 93 |
+
examples_per_page=30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
+
with gr.Column(scale=1):
|
| 96 |
+
|
| 97 |
+
with gr.Accordion('Advanced options', open=True):
|
| 98 |
+
with gr.Row():
|
| 99 |
+
|
| 100 |
+
domain = gr.Radio(
|
| 101 |
+
[
|
| 102 |
+
("Outdoor", "outdoor"),
|
| 103 |
+
("Indoor", "indoor"),
|
| 104 |
+
("Object", "object"),
|
| 105 |
+
],
|
| 106 |
+
label="Data Domain",
|
| 107 |
+
value="indoor",
|
| 108 |
+
)
|
| 109 |
+
guidance_scale = gr.Slider(
|
| 110 |
+
label="Classifier Free Guidance Scale",
|
| 111 |
+
minimum=1,
|
| 112 |
+
maximum=5,
|
| 113 |
+
step=1,
|
| 114 |
+
value=3,
|
| 115 |
+
)
|
| 116 |
+
denoise_steps = gr.Slider(
|
| 117 |
+
label="Number of denoising steps",
|
| 118 |
+
minimum=1,
|
| 119 |
+
maximum=20,
|
| 120 |
+
step=1,
|
| 121 |
+
value=10,
|
| 122 |
+
)
|
| 123 |
+
ensemble_size = gr.Slider(
|
| 124 |
+
label="Ensemble size",
|
| 125 |
+
minimum=1,
|
| 126 |
+
maximum=15,
|
| 127 |
+
step=1,
|
| 128 |
+
value=1,
|
| 129 |
+
)
|
| 130 |
+
processing_res = gr.Radio(
|
| 131 |
+
[
|
| 132 |
+
("Native", 0),
|
| 133 |
+
("Recommended", 768),
|
| 134 |
+
],
|
| 135 |
+
label="Processing resolution",
|
| 136 |
+
value=768,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
| 141 |
+
with gr.Row():
|
| 142 |
+
depth = gr.Image(interactive=False, height=384, show_label=False)
|
| 143 |
+
with gr.Row():
|
| 144 |
+
normal = gr.Image(interactive=False, height=384, show_label=False)
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
run_btn.success(fn=partial(depth_normal),
|
| 148 |
+
inputs=[input_image, denoising_steps,
|
| 149 |
+
ensemble_size,
|
| 150 |
+
processing_res,
|
| 151 |
+
guidance_scale,
|
| 152 |
+
domain],
|
| 153 |
+
outputs=[depth, normal]
|
| 154 |
+
)
|
| 155 |
+
demo.queue().launch(share=True, max_threads=80)
|
| 156 |
|
| 157 |
|
| 158 |
+
if __name__ == '__main__':
|
| 159 |
+
fire.Fire(run_demo)
|
| 160 |
|