Spaces:
Runtime error
Runtime error
| import spaces | |
| import functools | |
| import os | |
| import shutil | |
| import sys | |
| import git | |
| import gradio as gr | |
| import numpy as np | |
| import torch as torch | |
| from PIL import Image | |
| from gradio_imageslider import ImageSlider | |
| def process( | |
| pipe, | |
| path_input, | |
| ensemble_size, | |
| denoise_steps, | |
| processing_res, | |
| domain, | |
| normal_out_vis=None, | |
| path_out_fp32=None, | |
| path_out_vis=None, | |
| ): | |
| if path_out_vis is not None: | |
| return ( | |
| [normal_out_vis, path_out_vis], | |
| [normal_out_vis, path_out_fp32, path_out_vis], | |
| ) | |
| input_image = Image.open(path_input) | |
| # pipe_out = pipe( | |
| # input_image, | |
| # ensemble_size=ensemble_size, | |
| # denoising_steps=denoise_steps, | |
| # processing_res=processing_res, | |
| # domain=domain, | |
| # batch_size=1 if processing_res == 0 else 0, | |
| # show_progress_bar=True, | |
| # ) | |
| pipe_out = pipe( | |
| input_image, | |
| denoising_steps=3, | |
| ensemble_size=1, | |
| processing_res=768, | |
| batch_size=0, | |
| guidance_scale=3, | |
| domain="indoor", | |
| show_progress_bar=True, | |
| ) | |
| depth_pred = pipe_out.depth_np | |
| depth_colored = pipe_out.depth_colored | |
| normal_colored = pipe_out.normal_colored | |
| depth_16bit = (depth_pred * 65535.0).astype(np.uint16) | |
| path_output_dir = os.path.splitext(path_input)[0] + "_output" | |
| os.makedirs(path_output_dir, exist_ok=True) | |
| name_base = os.path.splitext(os.path.basename(path_input))[0] | |
| path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") | |
| normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png") | |
| path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") | |
| #np.save(path_out_fp32, depth_pred) | |
| #Image.fromarray(normal_out_vis).save(normal_out_vis) | |
| depth_colored.save(path_out_vis) | |
| return ( | |
| [normal_out_vis, path_out_vis], | |
| [normal_out_vis, path_out_fp32, path_out_vis], | |
| ) | |
| def run_demo_server(pipe): | |
| process_pipe = functools.partial(process, pipe) | |
| os.environ["GRADIO_ALLOW_FLAGGING"] = "never" | |
| with gr.Blocks( | |
| analytics_enabled=False, | |
| title="Marigold Depth Estimation", | |
| css=""" | |
| #download { | |
| height: 118px; | |
| } | |
| .slider .inner { | |
| width: 5px; | |
| background: #FFF; | |
| } | |
| .viewport { | |
| aspect-ratio: 4/3; | |
| } | |
| """, | |
| ) as demo: | |
| gr.Markdown( | |
| """ | |
| <h1 align="center">GeoWizard</h1> | |
| <p align="center"> | |
| <a title="Website" href="https://fuxiao0719.github.io/projects/geowizard/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
| </a> | |
| <a title="arXiv" href="https://arxiv.org/abs/2403.12013" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
| </a> | |
| <a title="Github" href="https://github.com/fuxiao0719/GeoWizard" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/github/stars/fuxiao0719/GeoWizard" alt="badge-github-stars"> | |
| </a> | |
| </p> | |
| <p align="justify"> | |
| GeoWizard is a Wizard who spells 3D geometry from a single image. | |
| Upload your image into the <b>left</b> side. | |
| </p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath", | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| ensemble_size = gr.Slider( | |
| label="Ensemble size", | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=1, | |
| ) | |
| denoise_steps = gr.Slider( | |
| label="Number of denoising steps", | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=10, | |
| ) | |
| processing_res = gr.Radio( | |
| [ | |
| ("Native", 0), | |
| ("Recommended", 768), | |
| ], | |
| label="Processing resolution", | |
| value=768, | |
| ) | |
| domain = gr.Radio( | |
| [ | |
| ("indoor", "indoor"), | |
| ("outdoor", "outdoor"), | |
| ("object", "object"), | |
| ], | |
| label="scene type", | |
| value='indoor', | |
| ) | |
| input_output_16bit = gr.File( | |
| label="Predicted depth (16-bit)", | |
| visible=False, | |
| ) | |
| input_output_fp32 = gr.File( | |
| label="Predicted depth (32-bit)", | |
| visible=False, | |
| ) | |
| input_output_vis = gr.File( | |
| label="Predicted depth (red-near, blue-far)", | |
| visible=False, | |
| ) | |
| with gr.Row(): | |
| submit_btn = gr.Button(value="Compute Depth", variant="primary") | |
| clear_btn = gr.Button(value="Clear") | |
| with gr.Column(): | |
| output_slider = ImageSlider( | |
| label="Predicted depth (red-near, blue-far)", | |
| type="filepath", | |
| show_download_button=True, | |
| show_share_button=True, | |
| interactive=False, | |
| elem_classes="slider", | |
| position=0.25, | |
| ) | |
| files = gr.Files( | |
| label="Depth outputs", | |
| elem_id="download", | |
| interactive=False, | |
| ) | |
| blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain] | |
| blocks_settings = blocks_settings_depth | |
| map_id_to_default = {b._id: b.value for b in blocks_settings} | |
| inputs = [ | |
| input_image, | |
| ensemble_size, | |
| denoise_steps, | |
| processing_res, | |
| domain, | |
| input_output_16bit, | |
| input_output_fp32, | |
| input_output_vis, | |
| ] | |
| outputs = [ | |
| submit_btn, | |
| input_image, | |
| output_slider, | |
| files, | |
| ] | |
| def submit_depth_fn(*args): | |
| out = list(process_pipe(*args)) | |
| out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out | |
| return out | |
| submit_btn.click( | |
| fn=submit_depth_fn, | |
| inputs=inputs, | |
| outputs=outputs, | |
| concurrency_limit=1, | |
| ) | |
| def clear_fn(): | |
| out = [] | |
| for b in blocks_settings: | |
| out.append(map_id_to_default[b._id]) | |
| out += [ | |
| gr.Button(interactive=True), | |
| gr.Button(interactive=True), | |
| gr.Image(value=None, interactive=True), | |
| None, None, None, None, None, None, None, | |
| ] | |
| return out | |
| clear_btn.click( | |
| fn=clear_fn, | |
| inputs=[], | |
| outputs=blocks_settings + [ | |
| submit_btn, | |
| input_image, | |
| input_output_16bit, | |
| input_output_fp32, | |
| input_output_vis, | |
| output_slider, | |
| files, | |
| ], | |
| ) | |
| demo.queue( | |
| api_open=False, | |
| ).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| ) | |
| def main(): | |
| REPO_URL = "https://github.com/lemonaddie/geowizard.git" | |
| CHECKPOINT = "lemonaddie/Geowizard" | |
| REPO_DIR = "geowizard" | |
| if os.path.isdir(REPO_DIR): | |
| shutil.rmtree(REPO_DIR) | |
| repo = git.Repo.clone_from(REPO_URL, REPO_DIR) | |
| sys.path.append(os.path.join(os.getcwd(), REPO_DIR)) | |
| from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline | |
| #device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT) | |
| try: | |
| import xformers | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except: | |
| pass # run without xformers | |
| try: | |
| import xformers | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except: | |
| pass # run without xformers | |
| pipe = pipe.to('cuda') | |
| run_demo_server(pipe) | |
| if __name__ == "__main__": | |
| main() | |