Spaces:
Running
Running
Update
Browse files- .pre-commit-config.yaml +2 -12
- README.md +1 -1
- app.py +103 -123
- model.py +3 -3
- requirements.txt +1 -1
.pre-commit-config.yaml
CHANGED
|
@@ -21,11 +21,11 @@ repos:
|
|
| 21 |
- id: docformatter
|
| 22 |
args: ['--in-place']
|
| 23 |
- repo: https://github.com/pycqa/isort
|
| 24 |
-
rev: 5.
|
| 25 |
hooks:
|
| 26 |
- id: isort
|
| 27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
-
rev: v0.
|
| 29 |
hooks:
|
| 30 |
- id: mypy
|
| 31 |
args: ['--ignore-missing-imports']
|
|
@@ -34,13 +34,3 @@ repos:
|
|
| 34 |
hooks:
|
| 35 |
- id: yapf
|
| 36 |
args: ['--parallel', '--in-place']
|
| 37 |
-
- repo: https://github.com/kynan/nbstripout
|
| 38 |
-
rev: 0.5.0
|
| 39 |
-
hooks:
|
| 40 |
-
- id: nbstripout
|
| 41 |
-
args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
|
| 42 |
-
- repo: https://github.com/nbQA-dev/nbQA
|
| 43 |
-
rev: 1.3.1
|
| 44 |
-
hooks:
|
| 45 |
-
- id: nbqa-isort
|
| 46 |
-
- id: nbqa-yapf
|
|
|
|
| 21 |
- id: docformatter
|
| 22 |
args: ['--in-place']
|
| 23 |
- repo: https://github.com/pycqa/isort
|
| 24 |
+
rev: 5.12.0
|
| 25 |
hooks:
|
| 26 |
- id: isort
|
| 27 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
+
rev: v0.991
|
| 29 |
hooks:
|
| 30 |
- id: mypy
|
| 31 |
args: ['--ignore-missing-imports']
|
|
|
|
| 34 |
hooks:
|
| 35 |
- id: yapf
|
| 36 |
args: ['--parallel', '--in-place']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.19.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -2,9 +2,9 @@
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
-
import argparse
|
| 6 |
import os
|
| 7 |
import pathlib
|
|
|
|
| 8 |
import subprocess
|
| 9 |
|
| 10 |
import gradio as gr
|
|
@@ -16,7 +16,7 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
| 16 |
mim.install('mmcv-full==1.5.2', is_yes=True)
|
| 17 |
|
| 18 |
with open('patch') as f:
|
| 19 |
-
subprocess.run('patch -p1'
|
| 20 |
|
| 21 |
from model import Model
|
| 22 |
|
|
@@ -27,132 +27,112 @@ You can modify sample steps and seeds. By varying seeds, you can sample differen
|
|
| 27 |
|
| 28 |
Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
|
| 29 |
'''
|
| 30 |
-
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.text2human" />'
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def parse_args() -> argparse.Namespace:
|
| 34 |
-
parser = argparse.ArgumentParser()
|
| 35 |
-
parser.add_argument('--device', type=str, default='cpu')
|
| 36 |
-
parser.add_argument('--theme', type=str)
|
| 37 |
-
parser.add_argument('--share', action='store_true')
|
| 38 |
-
parser.add_argument('--port', type=int)
|
| 39 |
-
parser.add_argument('--disable-queue',
|
| 40 |
-
dest='enable_queue',
|
| 41 |
-
action='store_false')
|
| 42 |
-
return parser.parse_args()
|
| 43 |
|
| 44 |
|
| 45 |
def set_example_image(example: list) -> dict:
|
| 46 |
-
return gr.
|
| 47 |
|
| 48 |
|
| 49 |
def set_example_text(example: list) -> dict:
|
| 50 |
-
return gr.
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
placeholder=
|
| 77 |
-
'''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
|
| 78 |
Note: The outer clothing type and accessories can be omitted.''')
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
if __name__ == '__main__':
|
| 158 |
-
main()
|
|
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 5 |
import os
|
| 6 |
import pathlib
|
| 7 |
+
import shlex
|
| 8 |
import subprocess
|
| 9 |
|
| 10 |
import gradio as gr
|
|
|
|
| 16 |
mim.install('mmcv-full==1.5.2', is_yes=True)
|
| 17 |
|
| 18 |
with open('patch') as f:
|
| 19 |
+
subprocess.run(shlex.split('patch -p1'), cwd='Text2Human', stdin=f)
|
| 20 |
|
| 21 |
from model import Model
|
| 22 |
|
|
|
|
| 27 |
|
| 28 |
Label image generation step can be skipped. However, in that case, the input label image must be 512x256 in size and must contain only the specified colors.
|
| 29 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def set_example_image(example: list) -> dict:
|
| 33 |
+
return gr.update(value=example[0])
|
| 34 |
|
| 35 |
|
| 36 |
def set_example_text(example: list) -> dict:
|
| 37 |
+
return gr.update(value=example[0])
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
model = Model()
|
| 41 |
+
|
| 42 |
+
with gr.Blocks(css='style.css') as demo:
|
| 43 |
+
gr.Markdown(DESCRIPTION)
|
| 44 |
+
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column():
|
| 47 |
+
with gr.Row():
|
| 48 |
+
input_image = gr.Image(label='Input Pose Image',
|
| 49 |
+
type='pil',
|
| 50 |
+
elem_id='input-image')
|
| 51 |
+
pose_data = gr.State()
|
| 52 |
+
with gr.Row():
|
| 53 |
+
paths = sorted(pathlib.Path('pose_images').glob('*.png'))
|
| 54 |
+
example_images = gr.Dataset(components=[input_image],
|
| 55 |
+
samples=[[path.as_posix()]
|
| 56 |
+
for path in paths])
|
| 57 |
+
|
| 58 |
+
with gr.Row():
|
| 59 |
+
shape_text = gr.Textbox(
|
| 60 |
+
label='Shape Description',
|
| 61 |
+
placeholder=
|
| 62 |
+
'''<gender>, <sleeve length>, <length of lower clothing>, <outer clothing type>, <other accessories1>, ...
|
|
|
|
|
|
|
| 63 |
Note: The outer clothing type and accessories can be omitted.''')
|
| 64 |
+
with gr.Row():
|
| 65 |
+
shape_example_texts = gr.Dataset(
|
| 66 |
+
components=[shape_text],
|
| 67 |
+
samples=[['man, sleeveless T-shirt, long pants'],
|
| 68 |
+
['woman, short-sleeve T-shirt, short jeans']])
|
| 69 |
+
with gr.Row():
|
| 70 |
+
generate_label_button = gr.Button('Generate Label Image')
|
| 71 |
+
|
| 72 |
+
with gr.Column():
|
| 73 |
+
with gr.Row():
|
| 74 |
+
label_image = gr.Image(label='Label Image',
|
| 75 |
+
type='numpy',
|
| 76 |
+
elem_id='label-image')
|
| 77 |
+
|
| 78 |
+
with gr.Row():
|
| 79 |
+
texture_text = gr.Textbox(
|
| 80 |
+
label='Texture Description',
|
| 81 |
+
placeholder=
|
| 82 |
+
'''<upper clothing texture>, <lower clothing texture>, <outer clothing texture>
|
| 83 |
Note: Currently, only 5 types of textures are supported, i.e., pure color, stripe/spline, plaid/lattice, floral, denim.'''
|
| 84 |
+
)
|
| 85 |
+
with gr.Row():
|
| 86 |
+
texture_example_texts = gr.Dataset(components=[texture_text],
|
| 87 |
+
samples=[
|
| 88 |
+
['pure color, denim'],
|
| 89 |
+
['floral, stripe'],
|
| 90 |
+
])
|
| 91 |
+
with gr.Row():
|
| 92 |
+
sample_steps = gr.Slider(label='Sample Steps',
|
| 93 |
+
minimum=10,
|
| 94 |
+
maximum=300,
|
| 95 |
+
value=10,
|
| 96 |
+
step=10)
|
| 97 |
+
with gr.Row():
|
| 98 |
+
seed = gr.Slider(0, 1000000, value=0, step=1, label='Seed')
|
| 99 |
+
with gr.Row():
|
| 100 |
+
generate_human_button = gr.Button('Generate Human')
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
with gr.Row():
|
| 104 |
+
result = gr.Image(label='Result',
|
| 105 |
+
type='numpy',
|
| 106 |
+
elem_id='result-image')
|
| 107 |
+
|
| 108 |
+
input_image.change(fn=model.process_pose_image,
|
| 109 |
+
inputs=input_image,
|
| 110 |
+
outputs=pose_data)
|
| 111 |
+
generate_label_button.click(fn=model.generate_label_image,
|
| 112 |
+
inputs=[
|
| 113 |
+
pose_data,
|
| 114 |
+
shape_text,
|
| 115 |
+
],
|
| 116 |
+
outputs=label_image)
|
| 117 |
+
generate_human_button.click(fn=model.generate_human,
|
| 118 |
+
inputs=[
|
| 119 |
+
label_image,
|
| 120 |
+
texture_text,
|
| 121 |
+
sample_steps,
|
| 122 |
+
seed,
|
| 123 |
+
],
|
| 124 |
+
outputs=result)
|
| 125 |
+
example_images.click(fn=set_example_image,
|
| 126 |
+
inputs=example_images,
|
| 127 |
+
outputs=example_images.components,
|
| 128 |
+
queue=False)
|
| 129 |
+
shape_example_texts.click(fn=set_example_text,
|
| 130 |
+
inputs=shape_example_texts,
|
| 131 |
+
outputs=shape_example_texts.components,
|
| 132 |
+
queue=False)
|
| 133 |
+
texture_example_texts.click(fn=set_example_text,
|
| 134 |
+
inputs=texture_example_texts,
|
| 135 |
+
outputs=texture_example_texts.components,
|
| 136 |
+
queue=False)
|
| 137 |
+
|
| 138 |
+
demo.queue().launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
-
import os
|
| 4 |
import pathlib
|
| 5 |
import sys
|
| 6 |
import zipfile
|
|
@@ -47,9 +46,10 @@ COLOR_LIST = [
|
|
| 47 |
|
| 48 |
|
| 49 |
class Model:
|
| 50 |
-
def __init__(self
|
|
|
|
| 51 |
self.config = self._load_config()
|
| 52 |
-
self.config['device'] = device
|
| 53 |
self._download_models()
|
| 54 |
self.model = SampleFromPoseModel(self.config)
|
| 55 |
self.model.batch_size = 1
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
|
|
|
| 3 |
import pathlib
|
| 4 |
import sys
|
| 5 |
import zipfile
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
class Model:
|
| 49 |
+
def __init__(self):
|
| 50 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 51 |
self.config = self._load_config()
|
| 52 |
+
self.config['device'] = device.type
|
| 53 |
self._download_models()
|
| 54 |
self.model = SampleFromPoseModel(self.config)
|
| 55 |
self.model.batch_size = 1
|
requirements.txt
CHANGED
|
@@ -5,7 +5,7 @@ mmsegmentation==0.24.1
|
|
| 5 |
numpy==1.22.3
|
| 6 |
openmim==0.1.5
|
| 7 |
Pillow==9.1.1
|
| 8 |
-
sentence-transformers==2.2.
|
| 9 |
tokenizers==0.12.1
|
| 10 |
torch==1.11.0
|
| 11 |
torchvision==0.12.0
|
|
|
|
| 5 |
numpy==1.22.3
|
| 6 |
openmim==0.1.5
|
| 7 |
Pillow==9.1.1
|
| 8 |
+
sentence-transformers==2.2.2
|
| 9 |
tokenizers==0.12.1
|
| 10 |
torch==1.11.0
|
| 11 |
torchvision==0.12.0
|