Spaces:
Running
Running
| import torch | |
| from diffusers import DiffusionPipeline, LCMScheduler, UNet2DConditionModel | |
| import logging | |
| # Configure logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| unet = UNet2DConditionModel.from_pretrained( | |
| "gvecchio/StableMaterials", | |
| subfolder="unet_lcm", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "gvecchio/StableMaterials", | |
| trust_remote_code=True, | |
| unet=unet, | |
| torch_dtype=torch.float16 | |
| ).to(device) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| def generate_material(prompt, seed=-1, resolution=512, refinement=False): | |
| try: | |
| seed = seed if seed != -1 else torch.randint(0, 10000, (1,)).item() | |
| logger.info(f"Generating images for prompt: {prompt} with seed: {seed}") | |
| generator = torch.Generator(device=pipe.device).manual_seed(seed) | |
| image = pipe( | |
| prompt=[prompt], | |
| tileable=True, | |
| num_images_per_prompt=1, | |
| num_inference_steps=4, | |
| generator=generator, | |
| ).images[0] | |
| image = image.resize((resolution, resolution)) | |
| if refinement: | |
| pass | |
| return image | |
| except Exception as e: | |
| logger.error(f"Exception occurred while generating images: {e}") | |
| raise | |