Update app.py
Browse files
app.py
CHANGED
|
@@ -1,45 +1,62 @@
|
|
| 1 |
-
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
app = flask.Flask(__name__)
|
| 9 |
|
| 10 |
# ===========================
|
| 11 |
-
# LOAD MODEL
|
| 12 |
# ===========================
|
| 13 |
-
model_id = "
|
| 14 |
print("🔄 Loading model...")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
model_id,
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
)
|
| 24 |
print("✅ Model loaded!")
|
| 25 |
except Exception as e:
|
| 26 |
print(f"❌ Error loading model: {e}")
|
| 27 |
-
#
|
| 28 |
|
| 29 |
# ===========================
|
| 30 |
# CHAT API
|
| 31 |
# ===========================
|
| 32 |
@app.route('/chat', methods=['POST'])
|
| 33 |
def chat():
|
|
|
|
|
|
|
|
|
|
| 34 |
try:
|
| 35 |
data = request.get_json()
|
| 36 |
msg = data.get("message", "")
|
| 37 |
if not msg:
|
| 38 |
return jsonify({"error": "No message sent"}), 400
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
return jsonify({"error": str(e)}), 500
|
| 45 |
|
|
|
|
| 1 |
+
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import torch
|
| 5 |
+
import warnings # warning suppress करने के लिए
|
| 6 |
|
| 7 |
+
# warnings को suppress करें, वर्ना CPU पर warnings आ सकती हैं
|
| 8 |
+
warnings.filterwarnings("ignore")
|
| 9 |
|
| 10 |
app = flask.Flask(__name__)
|
| 11 |
|
| 12 |
# ===========================
|
| 13 |
+
# LOAD MODEL (StableLM-3B-Chat)
|
| 14 |
# ===========================
|
| 15 |
+
model_id = "stabilityai/StableLM-3B-4E1T-Chat"
|
| 16 |
print("🔄 Loading model...")
|
| 17 |
|
| 18 |
+
# CPU/GPU device set
|
| 19 |
+
# हम CPU पर लोड करते समय 'torch.bfloat16' का उपयोग करके मेमोरी को कम करने की कोशिश करेंगे।
|
| 20 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 21 |
+
dtype = torch.float32 if device == -1 else torch.bfloat16 # CPU के लिए float32
|
| 22 |
+
|
| 23 |
try:
|
| 24 |
+
ai = pipeline(
|
| 25 |
+
"text-generation",
|
| 26 |
+
model=model_id,
|
| 27 |
+
max_new_tokens=200,
|
| 28 |
+
device=device,
|
| 29 |
+
torch_dtype=dtype, # CPU/Memory optimization
|
| 30 |
+
trust_remote_code=True # StableLM के लिए आवश्यक
|
| 31 |
)
|
| 32 |
print("✅ Model loaded!")
|
| 33 |
except Exception as e:
|
| 34 |
print(f"❌ Error loading model: {e}")
|
| 35 |
+
ai = None # If load fails, prevent later API errors
|
| 36 |
|
| 37 |
# ===========================
|
| 38 |
# CHAT API
|
| 39 |
# ===========================
|
| 40 |
@app.route('/chat', methods=['POST'])
|
| 41 |
def chat():
|
| 42 |
+
if ai is None:
|
| 43 |
+
return jsonify({"error": "Model initialization failed."}), 500
|
| 44 |
+
|
| 45 |
try:
|
| 46 |
data = request.get_json()
|
| 47 |
msg = data.get("message", "")
|
| 48 |
if not msg:
|
| 49 |
return jsonify({"error": "No message sent"}), 400
|
| 50 |
|
| 51 |
+
# StableLM Instruction Format:
|
| 52 |
+
prompt = f"<|user|>\n{msg}<|end|>\n<|assistant|>"
|
| 53 |
+
|
| 54 |
+
output = ai(prompt)[0]["generated_text"]
|
| 55 |
+
|
| 56 |
+
# Output को clean करें ताकि सिर्फ assistant का जवाब मिले
|
| 57 |
+
reply = output.split("<|assistant|>")[-1].strip()
|
| 58 |
+
|
| 59 |
+
return jsonify({"reply": reply})
|
| 60 |
except Exception as e:
|
| 61 |
return jsonify({"error": str(e)}), 500
|
| 62 |
|