Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,29 @@
|
|
| 1 |
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
-
# Use AutoModelForCausalLM for Decoder-only models like
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
|
|
|
| 7 |
app = flask.Flask(__name__)
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
print("🔄 Loading
|
| 12 |
|
|
|
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
-
# Load using AutoModelForCausalLM
|
| 15 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) # Using bfloat16 for better memory/speed on GPU
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
model.to(device)
|
| 19 |
|
| 20 |
-
print("✅ Model loaded
|
| 21 |
|
| 22 |
@app.route('/chat', methods=['POST'])
|
| 23 |
def chat():
|
|
@@ -28,44 +34,57 @@ def chat():
|
|
| 28 |
if not msg:
|
| 29 |
return jsonify({"error": "No message sent"}), 400
|
| 30 |
|
| 31 |
-
# ---
|
| 32 |
-
#
|
| 33 |
chat_history = [{"role": "user", "content": msg}]
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Tokenize the formatted prompt
|
| 38 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
| 39 |
|
| 40 |
-
# Generation
|
| 41 |
output = model.generate(
|
| 42 |
**inputs,
|
| 43 |
max_length=256,
|
| 44 |
do_sample=True,
|
| 45 |
-
top_p=0.
|
| 46 |
-
temperature=0.
|
| 47 |
-
eos_token_id
|
|
|
|
| 48 |
)
|
| 49 |
|
| 50 |
-
# Decode the output
|
| 51 |
full_reply = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 52 |
|
| 53 |
-
# ---
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
else:
|
| 61 |
-
# Fallback:
|
| 62 |
reply = tokenizer.decode(output[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True).strip()
|
| 63 |
|
| 64 |
return jsonify({"reply": reply})
|
| 65 |
|
| 66 |
except Exception as e:
|
|
|
|
| 67 |
return jsonify({"error": str(e)}), 500
|
| 68 |
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
|
|
|
| 71 |
app.run(host='0.0.0.0', port=7860)
|
|
|
|
| 1 |
import flask
|
| 2 |
from flask import request, jsonify
|
| 3 |
+
# Use AutoModelForCausalLM for Decoder-only models like Qwen
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
# Initialize the Flask application
|
| 8 |
app = flask.Flask(__name__)
|
| 9 |
|
| 10 |
+
# Qwen1.5-0.5B-Chat Model ID
|
| 11 |
+
model_id = "Qwen/Qwen1.5-0.5B-Chat"
|
| 12 |
|
| 13 |
+
print(f"🔄 Loading {model_id} model...")
|
| 14 |
|
| 15 |
+
# Load the tokenizer
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Load the model using the correct CausalLM class
|
| 19 |
+
# Using bfloat16 for better memory/speed if a compatible GPU is available
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
| 21 |
+
|
| 22 |
+
# Set the device (GPU/CPU)
|
| 23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
model.to(device)
|
| 25 |
|
| 26 |
+
print(f"✅ {model_id} Model loaded successfully!")
|
| 27 |
|
| 28 |
@app.route('/chat', methods=['POST'])
|
| 29 |
def chat():
|
|
|
|
| 34 |
if not msg:
|
| 35 |
return jsonify({"error": "No message sent"}), 400
|
| 36 |
|
| 37 |
+
# --- Qwen1.5 Chat Template Formatting ---
|
| 38 |
+
# Qwen models require input in the ChatML format.
|
| 39 |
chat_history = [{"role": "user", "content": msg}]
|
| 40 |
+
|
| 41 |
+
# apply_chat_template handles the specific formatting (e.g., <|im_start|>user\n...)
|
| 42 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
| 43 |
+
chat_history,
|
| 44 |
+
tokenize=False,
|
| 45 |
+
add_generation_prompt=True
|
| 46 |
+
)
|
| 47 |
|
| 48 |
# Tokenize the formatted prompt
|
| 49 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
| 50 |
|
| 51 |
+
# Generation configuration
|
| 52 |
output = model.generate(
|
| 53 |
**inputs,
|
| 54 |
max_length=256,
|
| 55 |
do_sample=True,
|
| 56 |
+
top_p=0.8,
|
| 57 |
+
temperature=0.6,
|
| 58 |
+
# Set pad_token_id to eos_token_id, which is often necessary for Causal LMs
|
| 59 |
+
pad_token_id=tokenizer.eos_token_id
|
| 60 |
)
|
| 61 |
|
| 62 |
+
# Decode the full output
|
| 63 |
full_reply = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 64 |
|
| 65 |
+
# --- Extract only the Generated Response ---
|
| 66 |
+
|
| 67 |
+
# Qwen ChatML format uses '<|im_start|>assistant\n' before the response
|
| 68 |
+
assistant_tag = "<|im_start|>assistant\n"
|
| 69 |
|
| 70 |
+
if assistant_tag in full_reply:
|
| 71 |
+
# Split the full reply and take the content after the assistant tag
|
| 72 |
+
reply = full_reply.split(assistant_tag)[-1].strip()
|
| 73 |
+
|
| 74 |
+
# Remove the end-of-message tag if it was generated
|
| 75 |
+
if "<|im_end|>" in reply:
|
| 76 |
+
reply = reply.split("<|im_end|>")[0].strip()
|
| 77 |
else:
|
| 78 |
+
# Fallback: Decode only the newly generated tokens
|
| 79 |
reply = tokenizer.decode(output[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True).strip()
|
| 80 |
|
| 81 |
return jsonify({"reply": reply})
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
+
# Catch any runtime errors
|
| 85 |
return jsonify({"error": str(e)}), 500
|
| 86 |
|
| 87 |
|
| 88 |
if __name__ == "__main__":
|
| 89 |
+
# Run the Flask app
|
| 90 |
app.run(host='0.0.0.0', port=7860)
|