Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Pratik Bhavsar
commited on
Commit
·
6ed7668
1
Parent(s):
a5bf7de
initial leaderboard
Browse files- app.py +66 -16
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,31 +2,81 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
df = pd.read_csv("results.csv").dropna()
|
| 7 |
dataset_columns = df.columns[7:].tolist()
|
| 8 |
|
| 9 |
|
| 10 |
-
def create_radar_plot(df, model_name):
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def model_info_tab(model_name=None):
|
| 32 |
if model_name is None:
|
|
@@ -202,7 +252,7 @@ with gr.Blocks() as app:
|
|
| 202 |
value=df.sort_values("Model Avg", ascending=False).iloc[0][
|
| 203 |
"Model"
|
| 204 |
],
|
| 205 |
-
label="
|
| 206 |
)
|
| 207 |
with gr.Column(scale=4):
|
| 208 |
model_info = gr.HTML()
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
|
| 7 |
df = pd.read_csv("results.csv").dropna()
|
| 8 |
dataset_columns = df.columns[7:].tolist()
|
| 9 |
|
| 10 |
|
| 11 |
+
# def create_radar_plot(df, model_name):
|
| 12 |
+
# model_data = df[df["Model"] == model_name].iloc[0]
|
| 13 |
+
# datasets = df.columns[7:].tolist()
|
| 14 |
|
| 15 |
+
# values = [model_data[m] for m in datasets]
|
| 16 |
+
# angles = np.linspace(0, 2 * np.pi, len(datasets), endpoint=False)
|
| 17 |
|
| 18 |
+
# # Close the plot by appending values to match angles length
|
| 19 |
+
# angles = np.concatenate((angles, [angles[0]])) # Add first angle again
|
| 20 |
+
# values = np.concatenate((values, [values[0]])) # Add first value again
|
| 21 |
|
| 22 |
+
# fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(projection="polar"))
|
| 23 |
+
# ax.plot(angles, values)
|
| 24 |
+
# ax.fill(angles, values, alpha=0.25)
|
| 25 |
+
# ax.set_xticks(angles[:-1]) # Exclude the last duplicate angle
|
| 26 |
+
# ax.set_xticklabels(datasets, size=8, fontweight="bold")
|
| 27 |
+
# ax.set_title(model_name, pad=5, y=1.05, fontsize=12, fontweight="bold")
|
| 28 |
|
| 29 |
+
# return fig
|
| 30 |
|
| 31 |
+
def create_radar_plot(df, model_name):
|
| 32 |
+
model_data = df[df["Model"] == model_name].iloc[0]
|
| 33 |
+
datasets = df.columns[7:].tolist()
|
| 34 |
+
values = [model_data[m] for m in datasets]
|
| 35 |
+
values.append(values[0])
|
| 36 |
+
datasets.append(datasets[0])
|
| 37 |
+
|
| 38 |
+
fig = go.Figure(
|
| 39 |
+
data=go.Scatterpolar(
|
| 40 |
+
r=values,
|
| 41 |
+
theta=datasets,
|
| 42 |
+
fill="toself",
|
| 43 |
+
fillcolor="rgba(99, 102, 241, 0.3)",
|
| 44 |
+
line=dict(color="#4F46E5", width=2),
|
| 45 |
+
name=model_name,
|
| 46 |
+
text=[f"{val:.3f}" for val in values],
|
| 47 |
+
textposition="middle right",
|
| 48 |
+
mode="lines+markers+text",
|
| 49 |
+
)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
fig.update_layout(
|
| 53 |
+
polar=dict(
|
| 54 |
+
radialaxis=dict(
|
| 55 |
+
visible=True,
|
| 56 |
+
range=[0, 1],
|
| 57 |
+
showline=False,
|
| 58 |
+
tickfont=dict(size=12),
|
| 59 |
+
),
|
| 60 |
+
angularaxis=dict(
|
| 61 |
+
tickfont=dict(size=13, family="Arial"),
|
| 62 |
+
rotation=90,
|
| 63 |
+
direction="clockwise",
|
| 64 |
+
),
|
| 65 |
+
),
|
| 66 |
+
showlegend=False,
|
| 67 |
+
title=dict(
|
| 68 |
+
text=model_name,
|
| 69 |
+
x=0.5,
|
| 70 |
+
y=0.95,
|
| 71 |
+
font=dict(size=24, family="Arial", color="#1F2937"),
|
| 72 |
+
),
|
| 73 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
| 74 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
| 75 |
+
height=800,
|
| 76 |
+
width=1000,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
return fig
|
| 80 |
|
| 81 |
def model_info_tab(model_name=None):
|
| 82 |
if model_name is None:
|
|
|
|
| 252 |
value=df.sort_values("Model Avg", ascending=False).iloc[0][
|
| 253 |
"Model"
|
| 254 |
],
|
| 255 |
+
label="Model",
|
| 256 |
)
|
| 257 |
with gr.Column(scale=4):
|
| 258 |
model_info = gr.HTML()
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
pandas
|
| 2 |
-
matplotlib
|
|
|
|
|
|
| 1 |
pandas
|
| 2 |
+
matplotlib
|
| 3 |
+
plotly
|