Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| os.system("pip install gdown") | |
| os.system("pip install imutils") | |
| os.system("python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
| os.system("pip install git+https://github.com/cocodataset/panopticapi.git") | |
| import gradio as gr | |
| # check pytorch installation: | |
| import detectron2 | |
| from detectron2.utils.logger import setup_logger | |
| # import some common libraries | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| # import some common detectron2 utilities | |
| from detectron2 import model_zoo | |
| from detectron2.engine import DefaultPredictor | |
| from detectron2.config import get_cfg | |
| from detectron2.utils.visualizer import Visualizer, ColorMode | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.projects.deeplab import add_deeplab_config | |
| coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic") | |
| # import kMaXDeepLab project | |
| from kmax_deeplab import add_kmax_deeplab_config | |
| from PIL import Image | |
| import imutils | |
| cfg = get_cfg() | |
| cfg.MODEL.DEVICE='cpu' | |
| add_deeplab_config(cfg) | |
| add_kmax_deeplab_config(cfg) | |
| cfg.merge_from_file("configs/coco/panoptic-segmentation/kmax_convnext_large.yaml") | |
| os.system("gdown 1b6rEnKw4PNTdqSdWpmb0P9dsvN0pkOiN") | |
| cfg.MODEL.WEIGHTS = './kmax_convnext_large.pth' | |
| cfg.MODEL.KMAX_DEEPLAB.TEST.SEMANTIC_ON = True | |
| cfg.MODEL.KMAX_DEEPLAB.TEST.INSTANCE_ON = True | |
| cfg.MODEL.KMAX_DEEPLAB.TEST.PANOPTIC_ON = True | |
| predictor = DefaultPredictor(cfg) | |
| os.system("wget https://i.imgur.com/Vj17K5z.jpg") | |
| def inference(img): | |
| im = cv2.imread(img) | |
| #im = imutils.resize(im, width=512) | |
| outputs = predictor(im) | |
| v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
| panoptic_result = v.draw_panoptic_seg(outputs["panoptic_seg"][0].to("cpu"), outputs["panoptic_seg"][1]).get_image() | |
| v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
| instance_result = v.draw_instance_predictions(outputs["instances"].to("cpu")).get_image() | |
| v = Visualizer(im[:, :, ::-1], coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW) | |
| semantic_result = v.draw_sem_seg(outputs["sem_seg"].argmax(0).to("cpu")).get_image() | |
| return Image.fromarray(np.uint8(panoptic_result)).convert('RGB'),Image.fromarray(np.uint8(instance_result)).convert('RGB'),Image.fromarray(np.uint8(semantic_result)).convert('RGB') | |
| title = "kMaX-DeepLab" | |
| description = "Gradio demo for kMaX-DeepLab. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2207.04044' target='_blank'>kMaX-DeepLab</a> | <a href='https://github.com/google-research/deeplab2' target='_blank'>Github Repo</a></p>" | |
| examples = [['Vj17K5z.jpg']] | |
| gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=[gr.outputs.Image(label="Panoptic segmentation",type="pil"),gr.outputs.Image(label="instance segmentation",type="pil"),gr.outputs.Image(label="semantic segmentation",type="pil")], title=title, | |
| description=description, | |
| article=article, | |
| examples=examples).launch(enable_queue=True) |