File size: 61,550 Bytes
3e30369 e318805 3e30369 178e582 3e30369 178e582 3e30369 395f973 3e30369 395f973 3e30369 178e582 3e30369 178e582 3e30369 178e582 b7af573 178e582 3e30369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging
import os
from src_maia.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, \
LLM_BENCHMARKS_TEXT
#from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src_maia.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION, INTRODUCTION_TEXT, TITLE
from src_maia.display.css_html_js import custom_css
from src_maia.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
WeightType, Precision
from src_maia.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src_maia.populate import get_evaluation_queue_df, get_leaderboard_df
from src_maia.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import requests
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# EVALITA results
BASELINES = {
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}
# GPT-4o results
REFERENCES = {
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""},
"MAIA-MC": {"icon": "🖼️", "name": "MAIA Multiple-Choice", "tooltip": ""}
}
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": "1"},
"SU": {"icon": "📝", "name": "Summarization", "tooltip": "2"},
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": "3"},
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": "4"},
"MAIA-GEN": {"icon": "🧩", "name": "MAIA Generative", "tooltip": "5"}
}
# Function to send a Slack notification for a new model submission for evaluation
def send_slack_notification(model_name, user_name, user_affiliation):
# Insert your Slack webhook URL here
webhook_url = os.getenv("WEBHOOK_URL")
# Create the messag to be sent to Slack
message = {
"text": f"New model submission for EVALITA-LLM leaderboard:\n\n"
f"**Model Name**: {model_name}\n"
f"**User**: {user_name}\n"
f"**Affiliation**: {user_affiliation}\n"
f"Check out the model on HuggingFace: https://huggingface.co/{model_name}"
}
# Send the message to Slack
response = requests.post(webhook_url, json=message)
# Check if the request was successful and return the appropriate message
if response.status_code == 200:
return "✅ **Notification sent successfully!**"
else:
return f"❌ **Failed to send notification**: {response.text}"
# Funcion to validate the model submission and send the request for processing
def validate_and_submit_request(model_name, user_email, user_affiliation):
# Check if model name is provided and not empt
if not model_name or not model_name.strip():
return "❌ **Error:** Model name is required."
# Check if user email is provided and not empty
if not user_email or not user_email.strip():
return "❌ **Error:** Email address is required."
# Validate email format using regex
email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if not re.match(email_regex, user_email.strip()):
return "❌ **Error:** Invalid email format. Please enter a valid email address."
# Check if user affiliation is provided and not empty
if not user_affiliation or not user_affiliation.strip():
return "❌ **Error:** Affiliation is required."
# Check if model name follows the correct format (organization/model-name)
if "/" not in model_name:
return "❌ **Error:** Model name must be in format 'organization/model-name' (e.g., 'microsoft/DialoGPT-medium')."
# Check if the model name contains only valid characters
if not re.match(r'^[a-zA-Z0-9._/-]+$', model_name):
return "❌ **Error:** Model name contains invalid characters."
slack_response = send_slack_notification(model_name.strip(), user_email.strip(), user_affiliation.strip())
# Return the Slack response (success or failure message)
return slack_response
# Funzione per calcolare la sensibilità del prompt (PSI)
def calculate_prompt_sensitivity(dataframe, tasks, prompt_ids):
# Elenco dei task generativi
generative_tasks = ["LS", "SU", "NER", "REL", "MAIA-GEN"]
cv_per_task = [] # Lista per memorizzare il CV per ogni task
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
task_accuracies = [] # Lista per memorizzare le accuratezze dei prompt per un task
for pid in prompt_ids:
pid_int = int(pid)
# Applicazione dei filtri sui prompt per ogni task
if pid_int <= 6 and task in generative_tasks: # Prompt 1-6 solo per task non generativi
continue # Ignoriamo i prompt 1-6 per i task generativi
elif pid_int in [7, 8] and task not in ["SU", "MAIA-GEN"]: # Prompt 7-8 solo per il task SU
continue # Ignoriamo i prompt 7-8 per task diversi da SU
elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]: # Prompt 9-10 solo per LS, NER, REL, MAIA-GEN
continue # Ignoriamo i prompt 9-10 per task che non sono LS, NER, o REL
# Calcolo della percentuale di modelli che hanno ottenuto il miglior prompt per il task
total = len(dataframe[prompt_col].dropna())
count = (dataframe[prompt_col] == pid).sum()
accuracy = (count / total * 100) if total > 0 else 0
task_accuracies.append(accuracy)
# Calcoliamo la media e la deviazione standard delle accuratezze per il task
if task_accuracies:
mean_acc = np.mean(task_accuracies)
std_acc = np.std(task_accuracies)
# Calcoliamo il Coefficiente di Variazione (CV) solo se la media è maggiore di 0
if mean_acc > 0:
cv = std_acc / mean_acc
cv_per_task.append(cv)
else:
cv_per_task.append(0)
else:
cv_per_task.append(0) # Se non ci sono dati per il task, CV è 0
# Calcola la media dei CV
mean_cv = np.mean(cv_per_task) if cv_per_task else 0
# Normalizza il CV per ottenere il PSI
if mean_cv >= 0.5:
psi = 1.0
else:
psi = mean_cv / 0.5
return psi, mean_cv, cv_per_task
def map_prompt_ids_for_generation(dataframe):
"""
Map original prompt IDs (1 or 2) to their corresponding generative prompt IDs.
- For task 'SU': 1 -> 7, 2 -> 8
- For tasks 'NER', 'REL', 'LS': 1 -> 9, 2 -> 10
"""
# Mapping for SU task
task = "SU"
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 7 if x == 1 else (8 if x == 2 else x)
)
# Mapping for SU task
task = "MAIA-GEN"
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 7 if x == 1 else (8 if x == 2 else x)
)
# Mapping for other tasks
for task in ["NER", "REL", "LS"]:
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 9 if x == 1 else (10 if x == 2 else x)
)
return dataframe
def create_best_model_comparison_table(dataframe):
"""
Tabella interattiva con dettagli dei modelli migliori per ogni task.
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "MAIA-MC", "MAIA-GEN"]
table_data = {
'Task': [],
'Best Overall Model': [],
'CPS': [],
'Best Prompt Model': [],
'Acc.': []
}
for task in tasks:
if task in dataframe.columns:
# Miglior modello per CPS
max_idx = dataframe[task].idxmax()
model_raw = dataframe.loc[max_idx, 'Model']
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
comb_perf_value = dataframe.loc[max_idx, task]
# Miglior modello per Best Prompt
best_prompt_column = f"{task} Best Prompt"
best_prompt_idx = dataframe[best_prompt_column].idxmax()
best_prompt_model_raw = dataframe.loc[best_prompt_idx, 'Model']
if isinstance(best_prompt_model_raw, str) and '<' in best_prompt_model_raw:
match = re.search(r'>([^<]+)<', best_prompt_model_raw)
best_prompt_model = match.group(1) if match else best_prompt_model_raw
else:
best_prompt_model = str(best_prompt_model_raw)
best_prompt_accuracy = dataframe.loc[best_prompt_idx, best_prompt_column]
# Aggiungi alla tabella
table_data['Task'].append(task)
table_data['Best Overall Model'].append(model_name)
table_data['CPS'].append(f"{comb_perf_value:.2f}")
table_data['Best Prompt Model'].append(best_prompt_model)
table_data['Acc.'].append(f"{best_prompt_accuracy:.2f}")
# Calcola altezza dinamica
row_height = 30
header_height = 30
caption_height = 100
fig_height = header_height + row_height * len(table_data['Task']) + caption_height
#fig_height = header_height + row_height * len(table_data['Task']) + caption_height + 50
fig = go.Figure(data=[go.Table(
columnwidth=[50, 195, 40, 195, 40],
header=dict(
values=[f'<b>{col}</b>' for col in table_data.keys()],
fill_color=['#2171b5', '#2171b5', '#2171b5', '#4292c6', '#4292c6'],
font=dict(color='white', size=12, family='Arial'),
align='center',
height=header_height
),
cells=dict(
values=list(table_data.values()),
fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]],
font=dict(color='#2c3e50', size=11, family='Arial'),
align=['center', 'left', 'center', 'left', 'center'],
height=row_height
)
)])
fig.update_layout(
title={'text': "Top Model per Task: CPS & Best Prompt",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
font=dict(family="Arial", size=11),
height=fig_height,
margin=dict(l=20, r=20, t=60, b=100)
)
# Caption
fig.add_annotation(
text="Best Overall Models: Scored using the primary metric, CPS, across all prompts. <br>"
"Best Prompt Model: Scored with the highest accuracy (unofficial) based on its best-performing prompt. <br>"
"No single model achieves the highest performance across all tasks.",
xref="paper", yref="paper",
x=0.5, y=-0.20,
showarrow=False,
font=dict(size=11, color="gray", family="Arial"),
align="center",
xanchor="center"
)
return fig
def create_prompt_heatmap(dataframe):
"""
Heatmap con percentuale di modelli che hanno ottenuto le best performance con ciascun prompt per ogni task,
mostrando solo i valori pertinenti:
- Prompt 1-6: solo per task multiple-choice
- Prompt 7-8: solo per SU
- Prompt 9-10: solo per LS, NER, REL
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "MAIA-MC", "LS", "SU", "NER", "REL", "MAIA-GEN"]
generative_tasks = ["LS", "SU", "NER", "REL", "MAIA-GEN"]
mc_tasks = [t for t in tasks if t not in generative_tasks]
all_prompt_ids = set()
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
if prompt_col in dataframe.columns:
all_prompt_ids.update(dataframe[prompt_col].dropna().unique())
prompt_ids = sorted(all_prompt_ids, key=int)
matrix = []
hover_texts = []
# Calcola la sensibilità al prompt (PSI, mean_cv, cv_per_task)
psi, mean_cv, cv_per_task = calculate_prompt_sensitivity(dataframe, tasks, prompt_ids)
#print(f"Prompt Sensitivity Index (PSI): {psi:.3f}")
#print(f"Mean CV: {mean_cv:.3f}")
#print(f"CV per task: {cv_per_task}")
for pid in prompt_ids:
row = []
hover_row = []
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
pid_int = int(pid)
# Filtri personalizzati
if pid_int <= 6 and task in generative_tasks:
row.append(None)
hover_row.append("")
elif pid_int in [7, 8] and task not in ["SU", "MAIA-GEN"]:
row.append(None)
hover_row.append("")
elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]:
row.append(None)
hover_row.append("")
elif prompt_col in dataframe.columns:
total = len(dataframe[prompt_col].dropna())
count = (dataframe[prompt_col] == pid).sum()
percentage = (count / total * 100) if total > 0 else 0
row.append(percentage)
hover_row.append(
f"<b>Prompt {pid} - {task}</b><br>"
f"Models: {count}/{total}<br>"
f"Percentage: {percentage:.1f}%"
)
else:
row.append(0)
hover_row.append(f"<b>Prompt {pid} - {task}</b><br>No data")
matrix.append(row)
hover_texts.append(hover_row)
# Ticktext colorati: blu per 1-6, arancio per 7-10
ticktext = []
for pid in prompt_ids:
pid_int = int(pid)
#if pid_int <= 6:
ticktext.append(f'<span style="color:#1f77b4;">P{pid} </span>') # blu
#else:
#ticktext.append(f'<span style="color:#ff7f0e;">P{pid}</span>') # arancio
fig = go.Figure(data=go.Heatmap(
z=matrix,
x=tasks,
y=prompt_ids,
colorscale=[
[0, '#f7fbff'],
[0.2, '#deebf7'],
[0.4, '#9ecae1'],
[0.6, '#4292c6'],
[0.8, '#2171b5'],
[1, '#08519c']
],
text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix],
texttemplate="%{text}",
textfont={"size": 11, "family": "Arial"},
hovertemplate='%{customdata}<extra></extra>',
customdata=hover_texts,
colorbar=dict(title="% Models", ticksuffix="%"),
zmin=0,
zmax=100
))
fig.update_yaxes(
tickmode='array',
tickvals=prompt_ids,
ticktext=ticktext,
tickfont={"size": 11, "family": "Arial"}
)
fig.update_layout(
title={'text': "Most Effective Prompts per Task Across Models",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
#xaxis_title="Task",
yaxis_title="Prompt Variant",
font=dict(family="Arial", size=11), # allinea font con line_chart
margin=dict(b=150),
template="plotly_white",
dragmode=False,
height=500
)
fig.add_annotation(
text=f"<b style='font-size:14px; color:#2c3e50;'>Mean CV: {mean_cv:.2f}</b>",
# Testo in grassetto e con colore personalizzato
xref="paper", yref="paper",
x=0.3, y=0.85, # Posizione sotto il grafico
showarrow=False,
font=dict(size=14, color="#2c3e50", family="Verdana"), # Cambiato font a 'Verdana' per un aspetto più elegante
align="center",
xanchor="center",
bgcolor="#f7f7f7", # Aggiunta di uno sfondo chiaro per migliorare la leggibilità
borderpad=5, # Padding per distanziare il testo dal bordo
bordercolor="#ccc", # Colore del bordo
borderwidth=1 # Larghezza del bordo
)
fig.add_annotation(
text=(
"Prompts 1–6 are for multiple-choice tasks, 7–10 for generative tasks. Darker cells represent the number of times, across <br>"
"all model configurations tested, that a prompt achieved the top performance. With a Mean CV (Coefficient of Variation averaged across tasks) <br>"
"above 0.3 there is high variability between prompts, suggesting the use of multiple prompts for more stable evaluation."
),
xref="paper", yref="paper",
x=0.5, y=-0.40,
showarrow=False,
font=dict(size=11, color="gray", family="Arial"),
align="center",
xanchor="center"
)
fig.update_xaxes(fixedrange=True)
fig.update_yaxes(fixedrange=True)
return fig
def highlight_best_per_task(df):
"""Add 🟡 symbol next to the maximum value in each task column"""
task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "MAIA-MC", "MAIA-GEN"]
df = df.copy()
for col in task_columns:
if col in df.columns:
max_val = df[col].max()
df[col] = df[col].apply(
lambda x: f"{x:.1f}🔺" if x == max_val else f"{x:.1f}"
)
return df
def theoretical_performance(df_hash):
"""
Theoretical performance of a model that scores the highest on every individual task
"""
# This is a placeholder - you'd need to pass the actual dataframe
# In practice, you'd compute this once and store it
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
return 75.0 # Placeholder value
def scale_sizes(values, min_size=8, max_size=30):
"""Normalize sizes for scatter plot markers """
if not values:
return []
vmin, vmax = min(values), max(values)
if vmax == vmin:
return [(min_size + max_size) / 2] * len(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
for val in values
]
def extract_model_name(model_string):
"""Extract model name from HTML string."""
match = re.search(r'>([^<]+)<', model_string)
return match.group(1) if match else model_string
def create_line_chart(dataframe):
"""Create left chart."""
def scale_sizes(values, min_size=8, max_size=30):
vmin, vmax = min(values), max(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
else (min_size + max_size) / 2
for val in values
]
fig = go.Figure()
# Loop su 5-Shot e 0-Shot
for shot, color in [(True, "blue"), (False, "red")]:
df = dataframe[dataframe["IS_FS"] == shot]
x = df["#Params (B)"].tolist()
y = df["Avg. Comb. Perf. ⬆️"].tolist()
labels = [
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
for m in df["Model"].tolist()
]
fig.add_trace(go.Scatter(
x=x,
y=y,
mode="markers",
name="5-Shot" if shot else "0-Shot",
marker=dict(color=color, size=scale_sizes(x)),
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
customdata=labels,
))
'''
# Show the best model
all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
if all_y:
max_idx = all_y.index(max(all_y))
max_x = dataframe["#Params (B)"].iloc[max_idx]
max_y = all_y[max_idx]
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
fig.add_annotation(
x=max_x,
y=max_y,
text=max_label,
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="black",
font=dict(size=11, color="black"),
xshift=10, yshift=10,
ax=-30, ay=-20,
xanchor="right"
)
'''
# Layout
fig.update_layout(
title="Model Accuracy vs #Params",
xaxis_title="#Params (B)", yaxis_title="Avgerage CPS",
template="plotly_white", hovermode="closest",
font=dict(family="Arial", size=10), dragmode=False,
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
)
# Caption
fig.add_annotation(
text="Accuracy generally rises with #Params, but smaller models <br>"
"with 5-shot can outperform larger zero-shot models.",
xref="paper", yref="paper", x=0.5, y=-0.3,
showarrow=False, font=dict(size=11, color="gray"),
align="center", xanchor="center"
)
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
def create_boxplot_task(dataframe=None, baselines=None, references=None):
"""Create right chart"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "MAIA-MC", "MAIA-GEN"]
# Dati di default se non forniti
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
if references is None:
references = {}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf",
"#ff69b4", # colore per MAIA-MC
"#00ced1"] # colore per MAIA-GEN]
fig = go.Figure()
for i, task in enumerate(tasks):
if task not in dataframe.columns:
continue
y_data = dataframe[task].dropna().tolist()
#print(task, y_data )
# Boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
hoverlabel=dict(bgcolor=colors[i], font_color="white"),
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# Linea baseline
baseline_value = baselines.get(task)
if baseline_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=baseline_value, y1=baseline_value,
line=dict(color="black", width=2, dash="dot"),
xref="x", yref="y"
)
# Linea reference GPT-4o
reference_value = references.get(task)
if reference_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=reference_value, y1=reference_value,
line=dict(color="red", width=2, dash="dashdot"),
xref="x", yref="y"
)
# Layout
fig.update_layout(
title="Distribution of Model Accuracy by Task",
#xaxis_title="Task",
yaxis_title="Average CPS",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=10),
margin=dict(b=80),
)
# Caption
fig.add_annotation(
text=(
"In tasks like TE and SA, models approach the accuracy of supervised models at EVALITA (dashed black line).<br>"
"In NER and REL they remain lower. Dashed red lines show GPT-4o reference results for generative tasks."
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray"),
align="center"
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
fig.update_xaxes(fixedrange=True)
return fig
def create_medal_assignments2(sorted_df):
"""Function for medal assignment logic"""
medals = {
'large_fs': False, 'medium_fs': False, 'small_fs': False,
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
}
new_model_column = []
for _, row in sorted_df.iterrows():
model_name = row['Model']
size = row["Size"]
is_fs = row['IS_FS']
if is_fs: # 5-Few-Shot
if size == "🔵🔵🔵" and not medals['large_fs']:
model_name = f"{model_name} 🔵🔵🔵🏆"
medals['large_fs'] = True
elif size == "🔵🔵" and not medals['medium_fs']:
model_name = f"{model_name} 🔵🔵🏆"
medals['medium_fs'] = True
elif size == "🔵" and not medals['small_fs']:
model_name = f"{model_name} 🔵🏆"
medals['small_fs'] = True
else: # 0-Shot
if size == "🔵🔵🔵" and not medals['large_0shot']:
model_name = f"{model_name} 🔵🔵🔵🎖️"
medals['large_0shot'] = True
elif size == "🔵🔵" and not medals['medium_0shot']:
model_name = f"{model_name} 🔵🔵🎖️"
medals['medium_0shot'] = True
elif size == "🔵" and not medals['small_0shot']:
model_name = f"{model_name} 🔵🎖️"
medals['small_0shot'] = True
new_model_column.append(model_name)
return new_model_column
def create_medal_assignments(sorted_df):
"""
Assign cups 🏆 to the top model in each category:
Dimension (Size) × Learning mode (FS / 0-Shot) × Model type (Textual / Multimodal)
"""
# Initialize a dictionary to keep track of which category already has a cup
cups = {
# Few-shot
('🔵🔵🔵', True, '🔤'): False,
('🔵🔵', True, '🔤'): False,
('🔵', True, '🔤'): False,
('🔵🔵🔵', True, '🔤🖼️'): False,
('🔵🔵', True, '🔤🖼️'): False,
('🔵', True, '🔤🖼️'): False,
# Zero-shot
('🔵🔵🔵', False, '🔤'): False,
('🔵🔵', False, '🔤'): False,
('🔵', False, '🔤'): False,
('🔵🔵🔵', False, '🔤🖼️'): False,
('🔵🔵', False, '🔤🖼️'): False,
('🔵', False, '🔤🖼️'): False,
}
new_model_column = []
for _, row in sorted_df.iterrows():
model_name = row['Model']
size = row["Size"]
is_fs = row['IS_FS'] # True = Few-shot, False = Zero-shot
mode = row['Mode'] # '🔤' or '🔤🖼️'
category_key = (size, is_fs, mode)
if category_key in cups and not cups[category_key]:
model_name = f"{model_name} 🏆"
cups[category_key] = True
new_model_column.append(model_name)
return new_model_column
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
"""Base leaderboard creation with common parameters. """
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="Learning mode (🅾️0-shot vs 5️⃣5-shot)"),
ColumnFilter(AutoEvalColumn.mode_symbol.name, type="checkboxgroup", label="Model type (🔤Textual vs 🔤🖼️Multimodal)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Leaderboard initialization """
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
# Show the best values for tasks
#sorted_dataframe = highlight_best_per_task(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
""" Task-specific leaderboard update."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list] + [int],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
def download_snapshot(repo, local_dir, max_retries=3):
"""Snapshot download with retry logic."""
for attempt in range(max_retries):
try:
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
snapshot_download(
repo_id=repo,
local_dir=local_dir,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
return True
except Exception as e:
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
logger.error(f"Failed to download {repo} after {max_retries} attempts")
return False
return False
def restart_space():
"""Restart the Hugging Face space."""
try:
logger.info("Restarting space... ")
API.restart_space(repo_id=REPO_ID)
except Exception as e:
logger.error(f"Error restarting space: {e}")
def create_title_html():
"""Function for title HTML."""
return """
<div class="title-header">
<h1 class="title-text">
EVALITA-LLM Leaderboard
</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" class="title-link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
def create_credits_markdown():
"""Credits section."""
return """
**This project has benefited from the following support:**
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
# Main initialization
def initialize_app():
"""Initialize the application ."""
try:
# Download snapshots
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
if not (queue_success and results_success):
logger.error("Failed to download required data")
return None, None, None, None, None
# Load leaderboard data
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS)
# Calculate theoretical max performance
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
except Exception as e:
logger.error(f"Error initializing app: {e}")
return None, None, None, None, None
def initialize_app2():
"""Initialize the application using local cache if available."""
try:
# Controlla se la cache locale contiene già i dati
if os.path.exists(EVAL_REQUESTS_PATH) and os.listdir(EVAL_REQUESTS_PATH):
logger.info(f"Usando cache locale per le richieste di valutazione: {EVAL_REQUESTS_PATH}")
queue_success = True
else:
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
if os.path.exists(EVAL_RESULTS_PATH) and os.listdir(EVAL_RESULTS_PATH):
logger.info(f"Usando cache locale per i risultati di valutazione: {EVAL_RESULTS_PATH}")
results_success = True
else:
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
if not (queue_success and results_success):
logger.error("Impossibile scaricare i dati richiesti")
return None, None, None, None, None
# Carica i DataFrame dalla cache locale
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Ottieni tutti i nomi delle colonne del DataFrame
all_columns = leaderboard_df.columns.tolist()
#print("Colonne totali del DataFrame:", all_columns)
# Calcola la performance teorica massima
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
except Exception as e:
logger.error(f"Errore durante l'inizializzazione dell'app: {e}")
return None, None, None, None, None
# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
LEADERBOARD_DF = map_prompt_ids_for_generation(LEADERBOARD_DF)
if LEADERBOARD_DF is None:
# Fallback behavior
logger.error("Failed to initialize app data")
theoretical_max_combined_perf = 0.0
# Main Gradio interface
def create_gradio_interface():
"""The main Gradio interface."""
demo = gr.Blocks(css=custom_css)
with demo:
# Titolo
gr.HTML(create_title_html())
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Tabs principali
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# 🏅 Benchmark
with gr.TabItem("🏅 Benchmark"):
if LEADERBOARD_DF is not None:
# Labels dei campi affiancate
'''
with gr.Row():
gr.HTML(f"""
<div class="performance-metrics">
<div class="metric-label" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard." style="color: #333333;">
Models tested: {len(LEADERBOARD_DF)}
</div>
<div class="metric-label" title="Average accuracy of the evaluated models." style="color: #333333;">
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
</div>
<div class="metric-label" title="Standard deviation of the evaluated models' performance." style="color: #333333;">
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
</div>
<div class="metric-label" title="Best evaluated model." style="color: #333333;">
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
</div>
<div class="metric-label" title="Accuracy of the best evaluated model." style="color: #333333;">
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
</div>
<div class="metric-label" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard." style="color: #333333;">
Ideal model: {theoretical_max_combined_perf:.2f}
</div>
</div>
""")
'''
#adv_stats = calculate_advanced_statistics(LEADERBOARD_DF)
# Separa i modelli per tipo
textual_df = LEADERBOARD_DF[LEADERBOARD_DF['Mode'] == '🔤']
multimodal_df = LEADERBOARD_DF[LEADERBOARD_DF['Mode'].str.contains('🔤🖼️', na=False)]
# Separa per modalità di apprendimento (SOLO TESTUALI)
#textual_fs = textual_df[textual_df['IS_FS'] == True]
#textual_0shot = textual_df[textual_df['IS_FS'] == False]
# Statistiche per taglia
#small_models = LEADERBOARD_DF[LEADERBOARD_DF['Size'] == '🔵']
#medium_models = LEADERBOARD_DF[LEADERBOARD_DF['Size'] == '🔵🔵']
#large_models = LEADERBOARD_DF[LEADERBOARD_DF['Size'] == '🔵🔵🔵']
# Conteggi
num_total_models = len(LEADERBOARD_DF)
num_textual_models = len(textual_df)
num_multimodal_models = len(multimodal_df)
# Miglior modello sui task testuali
best_textual_model = textual_df.loc[textual_df['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']
best_textual_score = round(textual_df['Avg. Comb. Perf. ⬆️'].max(), 1)
# Miglior modello sui task multimodali
best_multimodal_model = multimodal_df.loc[multimodal_df['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']
best_multimodal_score = round(multimodal_df['Avg. Comb. Perf. ⬆️'].max(), 1)
# Assicurati che i punteggi siano numerici prima di formattarli
best_textual_score = float(best_textual_score)
best_multimodal_score = float(best_multimodal_score)
# Poi puoi formattarli come stringhe con un solo decimale
best_textual_score = f"{best_textual_score:.1f}"
best_multimodal_score = f"{best_multimodal_score:.1f}"
# Dati per l'ultimo aggiornamento
last_update_date = "2025-12-07"
# Restante codice per visualizzare i dati su Gradio
with gr.Row():
gr.HTML(f"""
<div class="performance-metrics" style="display: flex; flex-wrap: wrap; gap: 8px; font-size: 10px;">
<!-- MODEL COUNTS -->
<div class="metric-label" style="padding: 4px; font-weight: bold; display: flex; align-items: center; background-color: #ffffff;">
<span style="font-size: 12px; color: #4a90e2;">Model Configurations:</span>
<span style="display: inline-flex; justify-content: center; align-items: center; width: 20px; height: 20px; border-radius: 50%; background-color: #4a90e2; color: white; text-align: center; font-size: 10px; margin-left: 5px;">{num_total_models}</span>
</div>
<div class="metric-label" style="padding: 4px; font-weight: bold; display: flex; align-items: center; background-color: #ffffff;">
<span style="font-size: 12px; color: #4a90e2;">Textual Configurations:</span>
<span style="display: inline-flex; justify-content: center; align-items: center; width: 20px; height: 20px; border-radius: 50%; background-color: #4a90e2; color: white; text-align: center; font-size: 10px; margin-left: 5px;">{num_textual_models}</span>
</div>
<div class="metric-label" style="padding: 4px; font-weight: bold; display: flex; align-items: center; background-color: #ffffff;">
<span style="font-size: 12px; color: #4a90e2;">Multimodal Configurations:</span>
<span style="display: inline-flex; justify-content: center; align-items: center; width: 20px; height: 20px; border-radius: 50%; background-color: #4a90e2; color: white; text-align: center; font-size: 10px; margin-left: 5px;">{num_multimodal_models}</span>
</div>
<!-- BEST MODELS -->
<div class="metric-label" title="Best model evaluated on textual data (regardless of modality)" style="padding: 4px; display: flex; align-items: center; background-color: #ffffff;">
<span style="font-size: 12px; color: #4a90e2;">Best Textual Model:</span>
<span style="font-size: 12px; color: #333333; margin-left: 5px;">{best_textual_model}</span>
<span style="display: inline-flex; justify-content: center; align-items: center; width: 20px; height: 20px; border-radius: 50%; background-color: #e94e77; color: white; text-align: center; font-size: 10px; margin-left: 5px;">{best_textual_score}</span>
</div>
<div class="metric-label" title="Best model evaluated on textual + visual/video data" style="padding: 4px; display: flex; align-items: center; background-color: #ffffff;">
<span style="font-size: 12px; color: #4a90e2;">Best Multimodal Model:</span>
<span style="font-size: 12px; color: #333333; margin-left: 5px;">{best_multimodal_model}</span>
<span style="display: inline-flex; justify-content: center; align-items: center; width: 20px; height: 20px; border-radius: 50%; background-color: #e94e77; color: white; text-align: center; font-size: 10px; margin-left: 5px;">{best_multimodal_score}</span>
</div>
<!-- LAST UPDATE -->
<div class="metric-label" style="padding: 4px; font-weight: bold; display: flex; align-items: center; background-color: #ffffff; border-radius: 5px; height: 40px;">
<span style="font-size: 12px; color: #4a90e2;">Last Update:</span>
<span style="font-size: 12px; color: #333333; margin-left: 5px;">{last_update_date}</span>
</div>
</div>
""")
# Grafici affiancati
with gr.Row():
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="line-chart")
with gr.Row():
gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF), elem_id="line-chart")
# Leaderboard
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['Rank', 'Size', 'FS', 'Mode', 'Model', "Avg. Comb. Perf. ⬆️",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "MAIA-MC", "MAIA-GEN" ],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Mode', 'Model', "Avg. Comb. Perf. ⬆️",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL", "MAIA-MC", "MAIA-GEN" ]]
)
with gr.TabItem("🧪 Tasks"):
with gr.Tabs(elem_classes="sub-tabs"):
# ----------------------------------------------------
# 1) MULTIPLE CHOICE TASKS
# ----------------------------------------------------
with gr.TabItem("🔢 Multiple-Choice"):
#gr.Markdown("### Multiple Choice Tasks")
with gr.Tabs():
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
#with gr.TabItem(f"{metadata['icon']} {metadata['name']} ({task})"):
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Mode', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Mode', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# ----------------------------------------------------
# 2) GENERATIVE TASKS
# ----------------------------------------------------
with gr.TabItem("📝 Generative"):
#gr.Markdown("### Generative Tasks")
with gr.Tabs():
for task, metadata in TASK_METADATA_GENERATIVE.items():
#with gr.TabItem(f"{metadata['icon']} {metadata['name']} ({task})"):
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Mode', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Mode', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
'''
# ----------------------------------------------------
# 3) MULTI-MODAL TASKS (NEW)
# ----------------------------------------------------
with gr.TabItem("🎥 Multi-Modal"):
gr.Markdown("### Multi-Modal Tasks")
with gr.Tabs():
# Only MAIA for now, but scalable for more
with gr.TabItem("🧩 MAIA"):
task_description = TASK_DESCRIPTIONS.get("MAIA", "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
"MAIA Prompt Average": "Prompt Average",
"MAIA Prompt Std": "Prompt Std",
"MAIA Best Prompt": "Best Prompt",
"MAIA Best Prompt Id": "Best Prompt Id",
"MAIA": "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
'''
# 📝 About
with gr.TabItem("📝 About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# 🚀 Submit a new model to evaluate
with gr.TabItem("🚀 Submit"):
gr.Markdown("# 📝 Model Evaluation Request", elem_classes="markdown-text")
gr.Markdown("""
**Fill out the form below to request evaluation of your model on EVALITA-LLM.**
Once submitted, our team will automatically receive a notification. We will evaluate the
submission’s relevance for both research and commercial purposes, as well as assess its feasibility.
""", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
# HuggingFace model name field
model_name_input = gr.Textbox(
label="HuggingFace Model Name",
placeholder="e.g., microsoft/DialoGPT-medium",
info="Enter the complete model name as it appears on HuggingFace Hub (organization/model-name)",
elem_id="model-name-input"
)
# User email field
user_name_input = gr.Textbox(
label="Your email address",
placeholder="e.g., mario.rossi@example.com",
info="Enter your email address for communication",
elem_id="user-email-input"
)
# Affiliation field
user_affiliation_input = gr.Textbox(
label="Affiliation",
placeholder="e.g., University of Milan, Google Research, Freelancer",
info="Enter your affiliation (university, company, organization)",
elem_id="user-affiliation-input"
)
# Submit button
submit_request_button = gr.Button(
"📤 Submit Request",
variant="primary",
elem_id="submit-request-button"
)
# Result area
submission_status = gr.Markdown(elem_id="submission-status")
# Connect button to function
submit_request_button.click(
validate_and_submit_request,
inputs=[model_name_input, user_name_input, user_affiliation_input],
outputs=submission_status
)
# Additional information
with gr.Accordion("ℹ️ Additional Information", open=False):
gr.Markdown("""
**What happens after submission:**
1. Your request is automatically sent to the EVALITA-LLM team
2. We verify that the model is accessible on HuggingFace
3. We contact you to confirm inclusion in the evaluation
4. The model is added to the evaluation queue
**Model requirements:**
- Model must be publicly accessible on HuggingFace Hub
- Must be compatible with the EleutherAI/lm-evaluation-harness framework
- Must have a license that allows evaluation
**Evaluation tasks:**
Your model will be evaluated on all tasks: TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL.
""", elem_classes="markdown-text")
'''
# Separators
with gr.TabItem("║", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Multiple Choice)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Separators
with gr.TabItem("│", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Generative)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
'''
# Citation e Credits
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True
)
with gr.Accordion("📙 Credits", open=False):
gr.Markdown(create_credits_markdown())
return demo
# Create and configure the demo
demo = create_gradio_interface()
# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=40).launch(
debug=True,
show_error=True
)
|