fixing bugs
Browse files
app.py
CHANGED
|
@@ -27,132 +27,168 @@ TORCH_DEVICE = "cpu"
|
|
| 27 |
|
| 28 |
|
| 29 |
def load_thera_model(repo_id: str, filename: str):
|
| 30 |
-
"""Carrega modelo com
|
| 31 |
try:
|
| 32 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 33 |
with open(model_path, 'rb') as fh:
|
| 34 |
checkpoint = pickle.load(fh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return build_thera(3, checkpoint['backbone'], checkpoint['size']), checkpoint['model']
|
| 36 |
except Exception as e:
|
| 37 |
logger.error(f"Erro ao carregar modelo: {str(e)}")
|
| 38 |
raise
|
| 39 |
|
| 40 |
|
| 41 |
-
# Inicialização
|
| 42 |
try:
|
| 43 |
-
logger.info("
|
| 44 |
model_edsr, params_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
|
|
|
|
|
|
|
| 45 |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 46 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 47 |
torch_dtype=torch.float32
|
| 48 |
).to(TORCH_DEVICE)
|
| 49 |
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
|
|
|
|
|
|
|
| 50 |
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 51 |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
-
logger.error(f"Falha na inicialização: {str(e)}")
|
| 54 |
raise
|
| 55 |
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
def full_pipeline(image: Image.Image, prompt: str, scale_factor: float = 2.0):
|
| 65 |
-
"""Pipeline completo com tratamento robusto"""
|
| 66 |
try:
|
| 67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
image = image.convert("RGB")
|
| 69 |
orig_w, orig_h = image.size
|
|
|
|
| 70 |
|
| 71 |
-
# Cálculo do tamanho
|
| 72 |
-
new_h =
|
| 73 |
-
|
| 74 |
-
logger.info(f"Redimensionando: {orig_h}x{orig_w} → {new_h}x{new_w}")
|
| 75 |
|
| 76 |
# Gerar grid de coordenadas
|
| 77 |
-
|
| 78 |
-
logger.debug(f"
|
| 79 |
-
|
| 80 |
-
# Verificação crítica
|
| 81 |
-
if
|
| 82 |
-
raise
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
#
|
| 85 |
source = jnp.array(image).astype(jnp.float32) / 255.0
|
| 86 |
-
source = source[jnp.newaxis, ...] # Adicionar batch
|
| 87 |
|
|
|
|
| 88 |
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
|
|
|
|
|
|
|
| 89 |
upscaled = model_edsr.apply(params_edsr, source, t, (new_h, new_w))
|
| 90 |
|
| 91 |
-
#
|
| 92 |
upscaled_img = Image.fromarray((np.array(upscaled[0]) * 255).astype(np.uint8))
|
|
|
|
| 93 |
|
| 94 |
-
# Bas-Relief
|
| 95 |
result = pipe(
|
| 96 |
prompt=f"BAS-RELIEF {prompt}, ultra detailed, 8K resolution",
|
| 97 |
image=upscaled_img,
|
| 98 |
strength=0.7,
|
| 99 |
-
num_inference_steps=30
|
|
|
|
| 100 |
)
|
| 101 |
bas_relief = result.images[0]
|
|
|
|
| 102 |
|
| 103 |
-
#
|
| 104 |
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
|
| 105 |
with torch.no_grad():
|
| 106 |
depth = depth_model(**inputs).predicted_depth
|
| 107 |
|
|
|
|
| 108 |
depth_map = torch.nn.functional.interpolate(
|
| 109 |
depth.unsqueeze(1),
|
| 110 |
size=bas_relief.size[::-1],
|
| 111 |
mode="bicubic"
|
| 112 |
).squeeze().cpu().numpy()
|
| 113 |
|
| 114 |
-
# Normalização
|
| 115 |
depth_min = depth_map.min()
|
| 116 |
depth_max = depth_map.max()
|
| 117 |
depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-8)
|
| 118 |
depth_img = Image.fromarray((depth_normalized * 255).astype(np.uint8))
|
|
|
|
| 119 |
|
| 120 |
return upscaled_img, bas_relief, depth_img
|
| 121 |
|
| 122 |
except Exception as e:
|
| 123 |
logger.error(f"ERRO NO PIPELINE: {str(e)}", exc_info=True)
|
| 124 |
-
raise gr.Error(f"
|
| 125 |
|
| 126 |
|
| 127 |
-
# Interface
|
| 128 |
-
with gr.Blocks(title="SuperRes+BasRelief", theme=gr.themes.
|
| 129 |
gr.Markdown("# 🖼️ Super Resolução + 🗿 Bas-Relief + 🗺️ Mapa de Profundidade")
|
| 130 |
|
| 131 |
with gr.Row():
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
full_pipeline,
|
| 154 |
inputs=[img_input, prompt, scale],
|
| 155 |
-
outputs=[upscaled_output, basrelief_output, depth_output]
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def load_thera_model(repo_id: str, filename: str):
|
| 30 |
+
"""Carrega modelo com múltiplas verificações"""
|
| 31 |
try:
|
| 32 |
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 33 |
with open(model_path, 'rb') as fh:
|
| 34 |
checkpoint = pickle.load(fh)
|
| 35 |
+
|
| 36 |
+
# Verificar estrutura do checkpoint
|
| 37 |
+
required_keys = {'model', 'backbone', 'size'}
|
| 38 |
+
if not required_keys.issubset(checkpoint.keys()):
|
| 39 |
+
missing = required_keys - checkpoint.keys()
|
| 40 |
+
raise ValueError(f"Checkpoint corrompido. Chaves faltando: {missing}")
|
| 41 |
+
|
| 42 |
return build_thera(3, checkpoint['backbone'], checkpoint['size']), checkpoint['model']
|
| 43 |
except Exception as e:
|
| 44 |
logger.error(f"Erro ao carregar modelo: {str(e)}")
|
| 45 |
raise
|
| 46 |
|
| 47 |
|
| 48 |
+
# Inicialização segura
|
| 49 |
try:
|
| 50 |
+
logger.info("Inicializando modelos...")
|
| 51 |
model_edsr, params_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
|
| 52 |
+
|
| 53 |
+
# Pipeline SDXL
|
| 54 |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 55 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 56 |
torch_dtype=torch.float32
|
| 57 |
).to(TORCH_DEVICE)
|
| 58 |
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
|
| 59 |
+
|
| 60 |
+
# Modelo de profundidade
|
| 61 |
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
| 62 |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
|
| 63 |
+
|
| 64 |
except Exception as e:
|
| 65 |
+
logger.error(f"Falha crítica na inicialização: {str(e)}")
|
| 66 |
raise
|
| 67 |
|
| 68 |
|
| 69 |
+
def safe_resize(original: tuple[int, int], scale: float) -> tuple[int, int]:
|
| 70 |
+
"""Calcula tamanho garantindo estabilidade numérica"""
|
| 71 |
+
h, w = original
|
| 72 |
+
new_h = int(h * scale)
|
| 73 |
+
new_w = int(w * scale)
|
| 74 |
+
|
| 75 |
+
# Ajustar para múltiplo de 8
|
| 76 |
+
new_h = max(32, new_h - new_h % 8)
|
| 77 |
+
new_w = max(32, new_w - new_w % 8)
|
| 78 |
+
|
| 79 |
+
return (new_h, new_w)
|
| 80 |
|
| 81 |
|
| 82 |
def full_pipeline(image: Image.Image, prompt: str, scale_factor: float = 2.0):
|
| 83 |
+
"""Pipeline completo com tratamento de erros robusto"""
|
| 84 |
try:
|
| 85 |
+
# Verificação inicial
|
| 86 |
+
if not image:
|
| 87 |
+
raise ValueError("Nenhuma imagem fornecida")
|
| 88 |
+
|
| 89 |
+
# Conversão segura para RGB
|
| 90 |
image = image.convert("RGB")
|
| 91 |
orig_w, orig_h = image.size
|
| 92 |
+
logger.info(f"Processando imagem: {orig_w}x{orig_h}")
|
| 93 |
|
| 94 |
+
# Cálculo do novo tamanho
|
| 95 |
+
new_h, new_w = safe_resize((orig_h, orig_w), scale_factor)
|
| 96 |
+
logger.info(f"Novo tamanho calculado: {new_h}x{new_w}")
|
|
|
|
| 97 |
|
| 98 |
# Gerar grid de coordenadas
|
| 99 |
+
grid = make_grid((new_h, new_w))
|
| 100 |
+
logger.debug(f"Grid gerado: {grid.shape}")
|
| 101 |
+
|
| 102 |
+
# Verificação crítica do grid
|
| 103 |
+
if grid.shape[1:3] != (new_h, new_w):
|
| 104 |
+
raise RuntimeError(
|
| 105 |
+
f"Incompatibilidade de dimensões: "
|
| 106 |
+
f"Grid {grid.shape[1:3]} vs Alvo {new_h}x{new_w}"
|
| 107 |
+
)
|
| 108 |
|
| 109 |
+
# Pré-processamento da imagem
|
| 110 |
source = jnp.array(image).astype(jnp.float32) / 255.0
|
| 111 |
+
source = source[jnp.newaxis, ...] # Adicionar dimensão de batch
|
| 112 |
|
| 113 |
+
# Parâmetro de escala
|
| 114 |
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
|
| 115 |
+
|
| 116 |
+
# Processamento Thera
|
| 117 |
upscaled = model_edsr.apply(params_edsr, source, t, (new_h, new_w))
|
| 118 |
|
| 119 |
+
# Conversão para PIL
|
| 120 |
upscaled_img = Image.fromarray((np.array(upscaled[0]) * 255).astype(np.uint8))
|
| 121 |
+
logger.info(f"Imagem super-resolvida: {upscaled_img.size}")
|
| 122 |
|
| 123 |
+
# Geração do Bas-Relief
|
| 124 |
result = pipe(
|
| 125 |
prompt=f"BAS-RELIEF {prompt}, ultra detailed, 8K resolution",
|
| 126 |
image=upscaled_img,
|
| 127 |
strength=0.7,
|
| 128 |
+
num_inference_steps=30,
|
| 129 |
+
guidance_scale=7.5
|
| 130 |
)
|
| 131 |
bas_relief = result.images[0]
|
| 132 |
+
logger.info(f"Bas-Relief gerado: {bas_relief.size}")
|
| 133 |
|
| 134 |
+
# Cálculo da profundidade
|
| 135 |
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
|
| 136 |
with torch.no_grad():
|
| 137 |
depth = depth_model(**inputs).predicted_depth
|
| 138 |
|
| 139 |
+
# Redimensionamento
|
| 140 |
depth_map = torch.nn.functional.interpolate(
|
| 141 |
depth.unsqueeze(1),
|
| 142 |
size=bas_relief.size[::-1],
|
| 143 |
mode="bicubic"
|
| 144 |
).squeeze().cpu().numpy()
|
| 145 |
|
| 146 |
+
# Normalização e conversão
|
| 147 |
depth_min = depth_map.min()
|
| 148 |
depth_max = depth_map.max()
|
| 149 |
depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-8)
|
| 150 |
depth_img = Image.fromarray((depth_normalized * 255).astype(np.uint8))
|
| 151 |
+
logger.info("Mapa de profundidade calculado")
|
| 152 |
|
| 153 |
return upscaled_img, bas_relief, depth_img
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
logger.error(f"ERRO NO PIPELINE: {str(e)}", exc_info=True)
|
| 157 |
+
raise gr.Error(f"Falha no processamento: {str(e)}")
|
| 158 |
|
| 159 |
|
| 160 |
+
# Interface Gradio
|
| 161 |
+
with gr.Blocks(title="SuperRes+BasRelief Pro", theme=gr.themes.Soft()) as app:
|
| 162 |
gr.Markdown("# 🖼️ Super Resolução + 🗿 Bas-Relief + 🗺️ Mapa de Profundidade")
|
| 163 |
|
| 164 |
with gr.Row():
|
| 165 |
+
input_col = gr.Column()
|
| 166 |
+
output_col = gr.Column()
|
| 167 |
+
|
| 168 |
+
with input_col:
|
| 169 |
+
img_input = gr.Image(label="Carregar Imagem", type="pil", height=300)
|
| 170 |
+
prompt = gr.Textbox(
|
| 171 |
+
label="Descrição do Relevo",
|
| 172 |
+
value="A insanely detailed and complex engraving relief, ultra-high definition",
|
| 173 |
+
placeholder="Descreva o estilo desejado..."
|
| 174 |
+
)
|
| 175 |
+
scale = gr.Slider(1.0, 4.0, value=2.0, step=0.1, label="Fator de Escala")
|
| 176 |
+
process_btn = gr.Button("Iniciar Processamento", variant="primary")
|
| 177 |
+
|
| 178 |
+
with output_col:
|
| 179 |
+
with gr.Tabs():
|
| 180 |
+
with gr.TabItem("Super Resolução"):
|
| 181 |
+
upscaled_output = gr.Image(label="Resultado", show_label=False)
|
| 182 |
+
with gr.TabItem("Bas-Relief"):
|
| 183 |
+
basrelief_output = gr.Image(label="Relevo", show_label=False)
|
| 184 |
+
with gr.TabItem("Profundidade"):
|
| 185 |
+
depth_output = gr.Image(label="Mapa 3D", show_label=False)
|
| 186 |
+
|
| 187 |
+
process_btn.click(
|
| 188 |
full_pipeline,
|
| 189 |
inputs=[img_input, prompt, scale],
|
| 190 |
+
outputs=[upscaled_output, basrelief_output, depth_output],
|
| 191 |
+
api_name="processar"
|
| 192 |
)
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
utils.py
CHANGED
|
@@ -13,36 +13,41 @@ def repeat_vmap(fun, in_axes=None):
|
|
| 13 |
return fun
|
| 14 |
|
| 15 |
|
| 16 |
-
def make_grid(
|
| 17 |
-
"""Gera grid de coordenadas com validação
|
| 18 |
-
|
| 19 |
-
h = w = max(16, patch_size) # Novo mínimo seguro
|
| 20 |
-
else:
|
| 21 |
-
h, w = (max(16, ps) for ps in patch_size) # 16x16 mínimo
|
| 22 |
|
| 23 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
y_coords = np.linspace(-0.5 + 1 / (2 * h), 0.5 - 1 / (2 * h), h)
|
| 25 |
x_coords = np.linspace(-0.5 + 1 / (2 * w), 0.5 - 1 / (2 * w), w)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
grid = np.stack(np.meshgrid(y_coords, x_coords, indexing='ij'), axis=-1)
|
| 29 |
return grid[np.newaxis, ...]
|
| 30 |
|
| 31 |
|
| 32 |
def interpolate_grid(coords, grid, order=0):
|
| 33 |
-
"""Interpolação com
|
| 34 |
try:
|
| 35 |
-
# Converter e garantir 4D
|
| 36 |
coords = jnp.asarray(coords)
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
while coords.ndim < 4:
|
| 40 |
coords = coords[jnp.newaxis, ...]
|
| 41 |
|
| 42 |
# Validação final
|
| 43 |
if coords.shape[-1] != 2 or coords.ndim != 4:
|
| 44 |
raise ValueError(
|
| 45 |
-
f"
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
# Transformação de coordenadas
|
|
@@ -61,4 +66,4 @@ def interpolate_grid(coords, grid, order=0):
|
|
| 61 |
return jax.vmap(jax.vmap(map_coordinates, in_axes=(2, None), out_axes=2))(grid, coords)
|
| 62 |
|
| 63 |
except Exception as e:
|
| 64 |
-
raise RuntimeError(f"Erro
|
|
|
|
| 13 |
return fun
|
| 14 |
|
| 15 |
|
| 16 |
+
def make_grid(target_shape: tuple[int, int]):
|
| 17 |
+
"""Gera grid de coordenadas com validação rigorosa"""
|
| 18 |
+
h, w = target_shape
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Garantir tamanho mínimo e divisibilidade
|
| 21 |
+
h = max(32, h)
|
| 22 |
+
w = max(32, w)
|
| 23 |
+
h = h if h % 8 == 0 else h + (8 - h % 8)
|
| 24 |
+
w = w if w % 8 == 0 else w + (8 - w % 8)
|
| 25 |
+
|
| 26 |
+
# Espaçamento preciso
|
| 27 |
y_coords = np.linspace(-0.5 + 1 / (2 * h), 0.5 - 1 / (2 * h), h)
|
| 28 |
x_coords = np.linspace(-0.5 + 1 / (2 * w), 0.5 - 1 / (2 * w), w)
|
| 29 |
|
| 30 |
+
# Criar grid 4D (1, H, W, 2)
|
| 31 |
grid = np.stack(np.meshgrid(y_coords, x_coords, indexing='ij'), axis=-1)
|
| 32 |
return grid[np.newaxis, ...]
|
| 33 |
|
| 34 |
|
| 35 |
def interpolate_grid(coords, grid, order=0):
|
| 36 |
+
"""Interpolação segura com verificações em tempo real"""
|
| 37 |
try:
|
| 38 |
+
# Converter e garantir formato 4D
|
| 39 |
coords = jnp.asarray(coords)
|
| 40 |
+
original_shape = coords.shape
|
| 41 |
+
|
| 42 |
+
# Adicionar dimensões faltantes
|
| 43 |
while coords.ndim < 4:
|
| 44 |
coords = coords[jnp.newaxis, ...]
|
| 45 |
|
| 46 |
# Validação final
|
| 47 |
if coords.shape[-1] != 2 or coords.ndim != 4:
|
| 48 |
raise ValueError(
|
| 49 |
+
f"Formato inválido: {original_shape} → {coords.shape}. "
|
| 50 |
+
f"Esperado (B, H, W, 2)"
|
| 51 |
)
|
| 52 |
|
| 53 |
# Transformação de coordenadas
|
|
|
|
| 66 |
return jax.vmap(jax.vmap(map_coordinates, in_axes=(2, None), out_axes=2))(grid, coords)
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
+
raise RuntimeError(f"Erro na interpolação: {str(e)}") from e
|