Spaces:
Running
Running
File size: 11,152 Bytes
f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 ba898a5 f912ae7 ba898a5 f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 64f18ec f912ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# --- The Final, Definitive, and Corrected Application ---
import os
import time
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from dotenv import load_dotenv
from google.api_core.exceptions import ResourceExhausted
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.utils.logging import set_verbosity_error
import gradio as gr
import PyPDF2
from docx import Document
# --- 1. GLOBAL SETUP ---
set_verbosity_error()
load_dotenv()
# --- 2. ONE-TIME MODEL INITIALIZATION ---
def initialize_hf_models():
"""Loads all local Hugging Face models ONCE."""
print("--- Initializing Hugging Face Models (once) ---")
device = -1
print(f"✅ Using device: CPU (forced for HF models for stability)")
start_time = time.time()
summarizer_pipeline = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device)
summarizer = HuggingFacePipeline(pipeline=summarizer_pipeline)
print(f"-> Summarization model loaded in {time.time() - start_time:.2f} seconds.")
start_time = time.time()
qa_pipeline_obj = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", device=device)
print(f"-> Q&A model loaded in {time.time() - start_time:.2f} seconds.")
return summarizer, qa_pipeline_obj
SUMMARIZER_MODEL, QA_PIPELINE_MODEL = initialize_hf_models()
# Initialize the Hugging Face summarization model
def initialize_hf_summarizer():
"""Initialize the Hugging Face summarization model."""
print("--- Initializing Hugging Face Summarization Model ---")
device = -1 # Use CPU
tokenizer = AutoTokenizer.from_pretrained("allenai/led-large-16384")
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/led-large-16384")
print("✅ Hugging Face summarization model loaded.")
return tokenizer, model
HF_TOKENIZER, HF_MODEL = initialize_hf_summarizer()
# Summarize text or document using LED model
def summarize_text(tokenizer, model, text):
print("\n⏳ Generating summary...")
start_time = time.time()
inputs = tokenizer(text, return_tensors="pt", max_length=16384, truncation=True)
summary_ids = model.generate(inputs["input_ids"], max_length=512, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(f"-> Summary generated in {time.time() - start_time:.2f} seconds.")
return summary
# --- 3. TASK-SPECIFIC FUNCTIONS (No changes here, they were correct) ---
def summarize_text_with_prompt(summarizer, text):
print("\n⏳ Generating summary...")
start_time = time.time()
summary_template = PromptTemplate.from_template("Summarize the following text in a concise way:\n\n{text}")
chain = summary_template | summarizer
try:
summary = chain.invoke({"text": text})
print(f"-> Summary generated in {time.time() - start_time:.2f} seconds.")
return summary
except Exception as e:
raise gr.Error(f"Error during summarization: {e}")
def create_quiz(gemini_key, text, num_questions):
print(f"\n⏳ Generating {num_questions} quiz questions with Gemini...")
start_time = time.time()
try:
genai.configure(api_key=gemini_key)
# Replace "models/chat-bison-002" with a valid model name from the list_models output
SELECTED_MODEL = "models/gemini-2.5-pro" # Example model name, replace with an appropriate one
gemini_model = ChatGoogleGenerativeAI(model=SELECTED_MODEL, google_api_key=gemini_key, temperature=0.7)
except Exception as e:
raise gr.Error(f"Gemini API configuration error. Check your key. Details: {e}")
example = """[START OF EXAMPLE]
Context: The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System. The dark areas on its surface are called maria.
Quiz:
Q: What is the Moon's status relative to Earth?
A) A man-made satellite
B) A natural satellite
C) A dwarf planet
D) A star
Answer: B
Q: The dark areas on the Moon's surface are known as what?
A) Craters
B) Valleys
C) Maria
D) Highlands
Answer: C
[END OF EXAMPLE]"""
prompt_text = f"{example}\n\n[START OF TASK]\nContext: {{text}}\n\nGenerate exactly {{num_questions}} multiple-choice questions in the same format. Each question must have 4 options (A-D) and indicate the correct Answer.\n\nQuiz:"
prompt = PromptTemplate.from_template(prompt_text)
chain = LLMChain(llm=gemini_model, prompt=prompt)
try:
quiz_text = chain.run(text=text, num_questions=num_questions)
print(f"-> Quiz generated in {time.time() - start_time:.2f} seconds.")
return quiz_text
except Exception as e:
raise gr.Error(f"Error during quiz generation: {e}")
def answer_question(qa_pipeline, text, question):
print(f"\n⏳ Answering question: '{question}'")
start_time = time.time()
try:
result = qa_pipeline(question=question, context=text)
print(f"-> Answer generated in {time.time() - start_time:.2f} seconds.")
return f"Answer: {result['answer']}"
except Exception as e:
raise gr.Error(f"Error during Q&A: {e}")
def create_flashcards(gemini_key, text, num_flashcards):
print(f"\n⏳ Generating {num_flashcards} flashcards with Gemini...")
start_time = time.time()
try:
genai.configure(api_key=gemini_key)
gemini_model = ChatGoogleGenerativeAI(model="models/gemini-2.5-pro", google_api_key=gemini_key, temperature=0.7)
except Exception as e:
raise gr.Error(f"Gemini API configuration error. Check your key. Details: {e}")
example = """[START OF EXAMPLE]
Context: The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System. The dark areas on its surface are called maria.
Flashcards:
Flashcard 1:
Front: What is Earth's only natural satellite?
Back: The Moon
Flashcard 2:
Front: What are the dark areas on the Moon's surface called?
Back: Maria
[END OF EXAMPLE]"""
prompt_text = f"{example}\n\n[START OF TASK]\nContext: {{text}}\n\nGenerate exactly {{num_flashcards}} flashcards in the same format.\n\nFlashcards:"
prompt = PromptTemplate.from_template(prompt_text)
chain = LLMChain(llm=gemini_model, prompt=prompt)
try:
flashcards_text = chain.run(text=text, num_flashcards=num_flashcards)
print(f"-> Flashcards generated in {time.time() - start_time:.2f} seconds.")
return flashcards_text
except Exception as e:
raise gr.Error(f"Error during flashcard generation: {e}")
# --- 4. MAIN PROCESSING FUNCTION (REWRITTEN FOR CLARITY AND CORRECTNESS) ---
# Update the process_request function to use Gemini API for summarization when a document is uploaded
def process_request(text, task, num_items, question, file, progress=gr.Progress()):
"""Main function called by the Gradio interface with corrected logic."""
progress(0, desc="Starting...")
gemini_key = os.getenv("GEMINI_API_KEY")
# If a file is uploaded, extract its content
if file is not None:
text = extract_text_from_file(file)
if not text:
raise gr.Error("Please provide input text or upload a document.")
output_content = "An unexpected error occurred."
if task == "Summary":
progress(0.5, desc="Generating summary...")
try:
if file is not None:
# Use LED model for documents
output_content = summarize_text(HF_TOKENIZER, HF_MODEL, text)
else:
# Use the text summarizer for text input
output_content = summarize_text_with_prompt(SUMMARIZER_MODEL, text)
except Exception as e:
raise gr.Error(f"Error during summarization: {e}")
elif task == "Q&A":
if not question or not question.strip():
raise gr.Error("Please enter a question for the Q&A task.")
progress(0.5, desc="Finding answer...")
output_content = answer_question(QA_PIPELINE_MODEL, text, question)
elif task == "Quiz":
if not gemini_key:
raise gr.Error("API Key Error: The app owner has not set the GEMINI_API_KEY secret in the Hugging Face Space.")
progress(0.5, desc=f"Generating {num_items} quiz questions...")
output_content = create_quiz(gemini_key, text, num_questions=num_items)
elif task == "Flashcards":
if not gemini_key:
raise gr.Error("API Key Error: The app owner has not set the GEMINI_API_KEY secret in the Hugging Face Space.")
progress(0.5, desc=f"Generating {num_items} flashcards...")
output_content = create_flashcards(gemini_key, text, num_flashcards=num_items)
progress(1, desc="Done!")
return output_content
# Add support for document upload and processing
# Function to extract text from uploaded files
def extract_text_from_file(file):
"""Extract text from uploaded file based on its type."""
if file.name.endswith(".txt"):
# Handle .txt files
with open(file.name, "r", encoding="utf-8") as f:
return f.read()
elif file.name.endswith(".pdf"):
# Handle .pdf files
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
elif file.name.endswith(".docx"):
# Handle .docx files
doc = Document(file)
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
return text
else:
raise gr.Error("Unsupported file type. Please upload a .txt, .pdf, or .docx file.")
# --- 5. GRADIO INTERFACE (NO CHANGES NEEDED HERE) ---
with gr.Blocks(title="Study Buddy AI with Document Upload") as demo:
gr.Markdown("# Study Buddy AI: Summary, Quiz, Q&A, Flashcards with Document Upload")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(label="Input Text", lines=10, placeholder="Paste your study material here...")
file_input = gr.File(label="Upload Document (.txt, .pdf, .docx)")
with gr.Column(scale=1):
task_dropdown = gr.Dropdown(choices=["Summary", "Quiz", "Q&A", "Flashcards"], label="Select a Task", value="Summary")
num_items_slider = gr.Slider(minimum=1, maximum=20, value=10, step=1, label="Number of Questions/Flashcards")
question_input = gr.Textbox(label="Your Question (for Q&A task only)", placeholder="e.g., What is the Great Red Spot?")
submit_button = gr.Button("Generate", variant="primary")
output_textbox = gr.Textbox(label="Output", lines=15, interactive=False)
submit_button.click(
fn=process_request,
inputs=[text_input, task_dropdown, num_items_slider, question_input, file_input],
outputs=output_textbox
)
if __name__ == "__main__":
demo.launch() |