Spaces:
Build error
Build error
| import argparse | |
| import datetime | |
| import inspect | |
| import os | |
| from omegaconf import OmegaConf | |
| import torch | |
| import diffusers | |
| from diffusers import AutoencoderKL, DDIMScheduler | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from animatediff.models.unet import UNet3DConditionModel | |
| from animatediff.pipelines.pipeline_animation import AnimationPipeline | |
| from animatediff.utils.util import save_videos_grid | |
| from animatediff.utils.util import load_weights | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange, repeat | |
| import csv, pdb, glob | |
| import math | |
| from pathlib import Path | |
| def main(args): | |
| *_, func_args = inspect.getargvalues(inspect.currentframe()) | |
| func_args = dict(func_args) | |
| time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
| savedir = f"samples/{Path(args.config).stem}-{time_str}" | |
| os.makedirs(savedir) | |
| config = OmegaConf.load(args.config) | |
| samples = [] | |
| sample_idx = 0 | |
| for model_idx, (config_key, model_config) in enumerate(list(config.items())): | |
| motion_modules = model_config.motion_module | |
| motion_modules = [motion_modules] if isinstance(motion_modules, str) else list(motion_modules) | |
| for motion_module in motion_modules: | |
| inference_config = OmegaConf.load(model_config.get("inference_config", args.inference_config)) | |
| ### >>> create validation pipeline >>> ### | |
| tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder") | |
| vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae") | |
| unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)) | |
| if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() | |
| else: assert False | |
| pipeline = AnimationPipeline( | |
| vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
| scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)), | |
| ).to("cuda") | |
| pipeline = load_weights( | |
| pipeline, | |
| # motion module | |
| motion_module_path = motion_module, | |
| motion_module_lora_configs = model_config.get("motion_module_lora_configs", []), | |
| # image layers | |
| dreambooth_model_path = model_config.get("dreambooth_path", ""), | |
| lora_model_path = model_config.get("lora_model_path", ""), | |
| lora_alpha = model_config.get("lora_alpha", 0.8), | |
| ).to("cuda") | |
| prompts = model_config.prompt | |
| n_prompts = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt | |
| random_seeds = model_config.get("seed", [-1]) | |
| random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds) | |
| random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds | |
| config[config_key].random_seed = [] | |
| for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)): | |
| # manually set random seed for reproduction | |
| if random_seed != -1: torch.manual_seed(random_seed) | |
| else: torch.seed() | |
| config[config_key].random_seed.append(torch.initial_seed()) | |
| print(f"current seed: {torch.initial_seed()}") | |
| print(f"sampling {prompt} ...") | |
| sample = pipeline( | |
| prompt, | |
| negative_prompt = n_prompt, | |
| num_inference_steps = model_config.steps, | |
| guidance_scale = model_config.guidance_scale, | |
| width = args.W, | |
| height = args.H, | |
| video_length = args.L, | |
| ).videos | |
| samples.append(sample) | |
| prompt = "-".join((prompt.replace("/", "").split(" ")[:10])) | |
| save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif") | |
| print(f"save to {savedir}/sample/{prompt}.gif") | |
| sample_idx += 1 | |
| samples = torch.concat(samples) | |
| save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4) | |
| OmegaConf.save(config, f"{savedir}/config.yaml") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--pretrained_model_path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",) | |
| parser.add_argument("--inference_config", type=str, default="configs/inference/inference-v1.yaml") | |
| parser.add_argument("--config", type=str, required=True) | |
| parser.add_argument("--L", type=int, default=16 ) | |
| parser.add_argument("--W", type=int, default=512) | |
| parser.add_argument("--H", type=int, default=512) | |
| args = parser.parse_args() | |
| main(args) | |