#!/usr/bin/env python3 """ Working Gemma 3n GGUF Backend Service Minimal FastAPI backend using only llama-cpp-python for GGUF models """ import os import logging import time from contextlib import asynccontextmanager from typing import List, Dict, Any, Optional from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field, field_validator # Import llama-cpp-python for GGUF model support try: from llama_cpp import Llama llama_cpp_available = True except ImportError: llama_cpp_available = False import uvicorn # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Pydantic models for OpenAI-compatible API class ChatMessage(BaseModel): role: str = Field(..., description="The role of the message author") content: str = Field(..., description="The content of the message") @field_validator('role') @classmethod def validate_role(cls, v: str) -> str: if v not in ["system", "user", "assistant"]: raise ValueError("Role must be one of: system, user, assistant") return v class ChatCompletionRequest(BaseModel): model: str = Field(default="gemma-3n-e4b-it", description="The model to use for completion") messages: List[ChatMessage] = Field(..., description="List of messages in the conversation") max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate") temperature: Optional[float] = Field(default=1.0, ge=0.0, le=2.0, description="Sampling temperature") top_p: Optional[float] = Field(default=0.95, ge=0.0, le=1.0, description="Top-p sampling") top_k: Optional[int] = Field(default=64, ge=1, le=100, description="Top-k sampling") stream: Optional[bool] = Field(default=False, description="Whether to stream responses") class ChatCompletionChoice(BaseModel): index: int message: ChatMessage finish_reason: str class ChatCompletionResponse(BaseModel): id: str object: str = "chat.completion" created: int model: str choices: List[ChatCompletionChoice] class HealthResponse(BaseModel): status: str model: str version: str backend: str # Global variables for model management current_model = os.environ.get("AI_MODEL", "unsloth/gemma-3n-E4B-it-GGUF") llm = None def convert_messages_to_gemma_prompt(messages: List[ChatMessage]) -> str: """Convert OpenAI messages format to Gemma 3n chat format.""" # Gemma 3n uses specific format with and prompt_parts = [""] for message in messages: role = message.role content = message.content if role == "system": prompt_parts.append(f"system\n{content}") elif role == "user": prompt_parts.append(f"user\n{content}") elif role == "assistant": prompt_parts.append(f"model\n{content}") # Add the start for model response prompt_parts.append("model\n") return "\n".join(prompt_parts) @asynccontextmanager async def lifespan(app: FastAPI): """Application lifespan manager for startup and shutdown events""" global llm logger.info("🚀 Starting Gemma 3n GGUF Backend Service...") if not llama_cpp_available: logger.error("❌ llama-cpp-python is not available. Please install with: pip install llama-cpp-python") raise RuntimeError("llama-cpp-python not available") try: logger.info(f"📥 Loading Gemma 3n GGUF model from {current_model}...") # Configure model parameters for Gemma 3n llm = Llama.from_pretrained( repo_id=current_model, filename="*Q4_K_M.gguf", # Use Q4_K_M quantization for good performance verbose=True, # Gemma 3n specific settings n_ctx=4096, # Start with 4K context (can be increased to 32K) n_threads=4, # Adjust based on your CPU n_gpu_layers=-1, # Use all GPU layers if CUDA available, otherwise CPU # Chat template for Gemma 3n format chat_format="gemma", # Try built-in gemma format first ) logger.info("✅ Successfully loaded Gemma 3n GGUF model") except Exception as e: logger.error(f"❌ Failed to initialize Gemma 3n model: {e}") logger.warning("⚠️ Please download the GGUF model file locally and update the path") logger.warning("⚠️ You can download from: https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF") # For demo purposes, we'll continue without the model logger.info("🔄 Starting service in demo mode (responses will be mocked)") yield logger.info("🔄 Shutting down Gemma 3n Backend Service...") if llm: # Clean up model resources llm = None # Initialize FastAPI app app = FastAPI( title="Gemma 3n GGUF Backend Service", description="OpenAI-compatible chat completion API powered by Gemma-3n-E4B-it-GGUF", version="1.0.0", lifespan=lifespan ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Configure appropriately for production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def ensure_model_ready(): """Check if model is loaded and ready""" # For demo mode, we'll allow the service to run even without a model pass def generate_response_gguf(messages: List[ChatMessage], max_tokens: int = 512, temperature: float = 1.0, top_p: float = 0.95, top_k: int = 64) -> str: """Generate response using GGUF model via llama-cpp-python.""" if llm is None: # Demo mode response return "🤖 Demo mode: Gemma 3n model not loaded. This would be a real response from the Gemma 3n model. Please download the GGUF model from https://huggingface.co/unsloth/gemma-3n-E4B-it-GGUF" try: # Use the chat completion method if available if hasattr(llm, 'create_chat_completion'): # Convert to dict format for llama-cpp-python messages_dict = [{"role": msg.role, "content": msg.content} for msg in messages] response = llm.create_chat_completion( messages=messages_dict, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", "", ""] # Gemma 3n stop tokens ) return response['choices'][0]['message']['content'].strip() else: # Fallback to direct prompt completion prompt = convert_messages_to_gemma_prompt(messages) response = llm( prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, stop=["", "", ""], echo=False ) return response['choices'][0]['text'].strip() except Exception as e: logger.error(f"GGUF generation failed: {e}") return "I apologize, but I'm having trouble generating a response right now. Please try again." @app.get("/", response_class=JSONResponse) async def root() -> Dict[str, Any]: """Root endpoint with service information""" return { "message": "Gemma 3n GGUF Backend Service is running!", "model": current_model, "version": "1.0.0", "backend": "llama-cpp-python", "model_loaded": llm is not None, "endpoints": { "health": "/health", "chat_completions": "/v1/chat/completions" } } @app.get("/health", response_model=HealthResponse) async def health_check(): """Health check endpoint""" return HealthResponse( status="healthy" if (llm is not None) else "demo_mode", model=current_model, version="1.0.0", backend="llama-cpp-python" ) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion( request: ChatCompletionRequest ) -> ChatCompletionResponse: """Create a chat completion (OpenAI-compatible) using Gemma 3n GGUF""" try: ensure_model_ready() if not request.messages: raise HTTPException(status_code=400, detail="Messages cannot be empty") logger.info(f"Generating Gemma 3n response for {len(request.messages)} messages") response_text = generate_response_gguf( request.messages, request.max_tokens or 512, request.temperature or 1.0, request.top_p or 0.95, request.top_k or 64 ) response_text = response_text.strip() if response_text else "No response generated." return ChatCompletionResponse( id=f"chatcmpl-{int(time.time())}", created=int(time.time()), model=request.model, choices=[ChatCompletionChoice( index=0, message=ChatMessage(role="assistant", content=response_text), finish_reason="stop" )] ) except Exception as e: logger.error(f"Error in chat completion: {e}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") # Main entry point if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)