Spaces:
Running
Running
| import tempfile | |
| import time | |
| import os | |
| from utils import compute_sha1_from_file | |
| from langchain.schema import Document | |
| import streamlit as st | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from stats import add_usage | |
| def process_file(vector_store, file, loader_class, file_suffix, stats_db=None): | |
| documents = [] | |
| file_name = file.name | |
| file_size = file.size | |
| if st.secrets.self_hosted == "false": | |
| if file_size > 1000000: | |
| st.error("File size is too large. Please upload a file smaller than 1MB or self host.") | |
| return | |
| dateshort = time.strftime("%Y%m%d") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file: | |
| tmp_file.write(file.getvalue()) | |
| tmp_file.flush() | |
| loader = loader_class(tmp_file.name) | |
| documents = loader.load() | |
| file_sha1 = compute_sha1_from_file(tmp_file.name) | |
| os.remove(tmp_file.name) | |
| chunk_size = st.session_state['chunk_size'] | |
| chunk_overlap = st.session_state['chunk_overlap'] | |
| text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
| documents = text_splitter.split_documents(documents) | |
| # Add the document sha1 as metadata to each document | |
| docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name, | |
| "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort, | |
| "user" : st.session_state["username"]}) | |
| for doc in documents] | |
| vector_store.add_documents(docs_with_metadata) | |
| if stats_db: | |
| add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix, | |
| "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) | |