Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,602 Bytes
4724018 cd8c152 4724018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
import os
import sys
import math
from tqdm import tqdm
from PIL import Image, ImageDraw
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# try:
# sys.path.append(os.path.join(project_root, "submodules/MoGe"))
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# except:
# print("Warning: MoGe not found, motion transfer will not be applied")
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import export_to_video, load_image, load_video
# from models.spatracker.predictor import SpaTrackerPredictor
# from models.spatracker.utils.visualizer import Visualizer
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking
# from submodules.MoGe.moge.model import MoGeModel
from image_gen_aux import DepthPreprocessor
from moviepy.editor import ImageSequenceClip
from typing import Any, Dict, Optional, Tuple, Union, List, Callable
class DiffusionAsShaderPipeline:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize MotionTransfer class
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
# video parameters
self.max_depth = 65.0
self.fps = 8
# camera parameters
self.camera_motion=None
self.fov=55
# device
self.device = f"cuda"
# files
self.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
@torch.no_grad()
def _infer(
self,
prompt: str,
model_path: str,
tracking_tensor: torch.Tensor = None,
image_tensor: torch.Tensor = None, # [C,H,W] in range [0,1]
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
fps: int = 24,
seed: int = 0,
coarse_video: Optional[torch.Tensor] = None,
start_noise_t: Optional[int] = 10
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1]
- image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1]
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process.
- guidance_scale (float): The scale for classifier-free guidance.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation.
- seed (int): The seed for reproducibility.
"""
pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
# Convert tensor to PIL Image
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
image = Image.fromarray(image_np)
height, width = image.height, image.width
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
# Process tracking tensor
tracking_maps = tracking_tensor.float() # [T, C, H, W]
tracking_maps = tracking_maps.to(device=self.device, dtype=dtype)
tracking_first_frame = tracking_maps[0:1] # Get first frame as [1, C, H, W]
height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3]
if coarse_video is not None:
coarse_video = coarse_video.to(device=self.device, dtype=dtype).unsqueeze(0).permute(0, 2, 1, 3, 4)
# 2. Set Scheduler.
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to(self.device, dtype=dtype)
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
print("Encoding tracking maps")
tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W]
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
# 4. Generate the video frames based on the prompt.
video_generate = pipe(
prompt=prompt,
negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
image=image,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
tracking_maps=tracking_maps,
tracking_image=tracking_first_frame,
height=height,
width=width,
coarse_video=coarse_video,
start_noise_t=start_noise_t
).frames[0]
# 5. Export the generated frames to a video file. fps must be 8 for original video.
output_path = output_path if output_path else f"result.mp4"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_to_video(video_generate, output_path, fps=fps)
#========== camera parameters ==========#
def _set_camera_motion(self, camera_motion):
self.camera_motion = camera_motion
def _get_intr(self, fov, H=480, W=720):
fov_rad = math.radians(fov)
focal_length = (W / 2) / math.tan(fov_rad / 2)
cx = W / 2
cy = H / 2
intr = torch.tensor([
[focal_length, 0, cx],
[0, focal_length, cy],
[0, 0, 1]
], dtype=torch.float32)
return intr
def _apply_poses(self, pts, intr, poses):
"""
Args:
pts (torch.Tensor): pointclouds coordinates [T, N, 3]
intr (torch.Tensor): camera intrinsics [T, 3, 3]
poses (numpy.ndarray): camera poses [T, 4, 4]
"""
poses = torch.from_numpy(poses).float().to(self.device)
T, N, _ = pts.shape
ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3)
pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3)
pts_cam[:,:, :3] /= pts[:, :, 2:3]
# to homogeneous
pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4)
if poses.shape[0] == 1:
poses = poses.repeat(T, 1, 1)
elif poses.shape[0] != T:
raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3)
pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3)
pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]
return pts_proj
def apply_traj_on_tracking(self, pred_tracks, camera_motion=None, fov=55, frame_num=49):
intr = self._get_intr(fov).unsqueeze(0).repeat(frame_num, 1, 1).to(self.device)
tracking_pts = self._apply_poses(pred_tracks.squeeze(), intr, camera_motion).unsqueeze(0)
return tracking_pts
##============= SpatialTracker =============##
def generate_tracking_spatracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
str: Path to tracking video
"""
print("Loading tracking models...")
# Load tracking model
tracker = SpaTrackerPredictor(
checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'),
interp_shape=(384, 576),
seq_length=12
).to(self.device)
# Load depth model
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
video_depths = []
for i in range(video_tensor.shape[0]):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device)
# print("Video depth shape:", video_depth.shape)
segm_mask = np.ones((480, 720), dtype=np.uint8)
pred_tracks, pred_visibility, T_Firsts = tracker(
video * 255,
video_depth=video_depth,
grid_size=density,
backward_tracking=False,
depth_predictor=None,
grid_query_frame=0,
segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device),
wind_length=12,
progressive_tracking=False
)
return pred_tracks, pred_visibility, T_Firsts
finally:
# Clean up GPU memory
del tracker, self.depth_preprocessor
torch.cuda.empty_cache()
def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True):
video = video.unsqueeze(0).to(self.device)
vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0)
msk_query = (T_Firsts == 0)
pred_tracks = pred_tracks[:,:,msk_query.squeeze()]
pred_visibility = pred_visibility[:,:,msk_query.squeeze()]
tracking_video = vis.visualize(video=video, tracks=pred_tracks,
visibility=pred_visibility, save_video=False,
filename="temp")
tracking_video = tracking_video.squeeze(0) # [T, C, H, W]
wide_list = list(tracking_video.unbind(0))
wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list]
clip = ImageSequenceClip(wide_list, fps=self.fps)
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video.mp4")
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
# Convert tracking_video back to tensor in range [0,1]
tracking_frames = np.array(list(clip.iter_frames())) / 255.0
tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float()
return tracking_path, tracking_video
##============= MoGe =============##
def valid_mask(self, pixels, W, H):
"""Check if pixels are within valid image bounds
Args:
pixels (numpy.ndarray): Pixel coordinates of shape [N, 2]
W (int): Image width
H (int): Image height
Returns:
numpy.ndarray: Boolean mask of valid pixels
"""
return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \
(pixels[:, 1] < H))
def sort_points_by_depth(self, points, depths):
"""Sort points by depth values
Args:
points (numpy.ndarray): Points array of shape [N, 2]
depths (numpy.ndarray): Depth values of shape [N]
Returns:
tuple: (sorted_points, sorted_depths, sort_index)
"""
# Combine points and depths into a single array for sorting
combined = np.hstack((points, depths[:, None])) # Nx3 (points + depth)
# Sort by depth (last column) in descending order
sort_index = combined[:, -1].argsort()[::-1]
sorted_combined = combined[sort_index]
# Split back into points and depths
sorted_points = sorted_combined[:, :-1]
sorted_depths = sorted_combined[:, -1]
return sorted_points, sorted_depths, sort_index
def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)):
"""Draw a rectangle on the image
Args:
rgb (PIL.Image): Image to draw on
coord (tuple): Center coordinates (x, y)
side_length (int): Length of rectangle sides
color (tuple): RGB color tuple
"""
draw = ImageDraw.Draw(rgb)
# Calculate the bounding box of the rectangle
left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2)
right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2)
color = tuple(list(color))
draw.rectangle(
[left_up_point, right_down_point],
fill=tuple(color),
outline=tuple(color),
)
def visualize_tracking_moge(self, points, mask, save_tracking=True):
"""Visualize tracking results from MoGe model
Args:
points (numpy.ndarray): Points array of shape [T, H, W, 3]
mask (numpy.ndarray): Binary mask of shape [H, W]
save_tracking (bool): Whether to save tracking video
Returns:
tuple: (tracking_path, tracking_video)
- tracking_path (str): Path to saved tracking video, None if save_tracking is False
- tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1]
"""
# Create color array
T, H, W, _ = points.shape
colors = np.zeros((H, W, 3), dtype=np.uint8)
# Set R channel - based on x coordinates (smaller on the left)
colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1))
# Set G channel - based on y coordinates (smaller on the top)
colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T
# Set B channel - based on depth
z_values = points[0, :, :, 2] # get z values
inv_z = 1 / z_values # calculate 1/z
# Calculate 2% and 98% percentiles
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
# Normalize to [0,1] range
normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1)
colors[:, :, 2] = (normalized_z * 255).astype(np.uint8)
colors = colors.astype(np.uint8)
# colors = colors[mask]
# points = points * mask[None, :, :, None]
points = points.reshape(T, -1, 3)
colors = colors.reshape(-1, 3)
# Initialize list to store frames
frames = []
for i, pts_i in enumerate(tqdm(points)):
pixels, depths = pts_i[..., :2], pts_i[..., 2]
pixels[..., 0] = pixels[..., 0] * W
pixels[..., 1] = pixels[..., 1] * H
pixels = pixels.astype(int)
valid = self.valid_mask(pixels, W, H)
frame_rgb = colors[valid]
pixels = pixels[valid]
depths = depths[valid]
img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
step = 1
sorted_pixels = sorted_pixels[::step]
sorted_rgb = frame_rgb[sort_index][::step]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=2,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, coarse_video=None, start_noise_t=0, seed=0):
"""Generate final video with motion transfer
Args:
video_tensor (torch.Tensor): Input video tensor [T,C,H,W]
fps (float): Input video FPS
tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W]
image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation
prompt (str): Generation prompt
checkpoint_path (str): Path to model checkpoint
"""
self.fps = fps
# Use first frame if no image provided
if img_cond_tensor is None:
img_cond_tensor = video_tensor[0]
# Generate final video
final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4" if coarse_video is None else f"result_{start_noise_t}.mp4")
self._infer(
prompt=prompt,
model_path=checkpoint_path,
tracking_tensor=tracking_tensor,
image_tensor=img_cond_tensor,
output_path=final_output,
num_inference_steps=50,
guidance_scale=6.0,
dtype=torch.bfloat16,
fps=self.fps,
coarse_video=coarse_video,
start_noise_t=start_noise_t,
seed=seed
)
print(f"Final video generated successfully at: {final_output}")
def _set_object_motion(self, motion_type):
"""Set object motion type
Args:
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
"""
self.object_motion = motion_type
class CameraMotionGenerator:
def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'):
self.motion_type = motion_type
self.frame_num = frame_num
self.fov = fov
self.device = device
self.W = W
self.H = H
self.intr = torch.tensor([
[0, 0, W / 2],
[0, 0, H / 2],
[0, 0, 1]
], dtype=torch.float32, device=device)
# if fx, fy not provided
if not fx or not fy:
fov_rad = math.radians(fov)
fx = fy = (W / 2) / math.tan(fov_rad / 2)
self.intr[0, 0] = fx
self.intr[1, 1] = fy
def _apply_poses(self, pts, poses):
"""
Args:
pts (torch.Tensor): pointclouds coordinates [T, N, 3]
intr (torch.Tensor): camera intrinsics [T, 3, 3]
poses (numpy.ndarray): camera poses [T, 4, 4]
"""
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1).to(torch.float)
T, N, _ = pts.shape
ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3)
pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3)
pts_cam[:,:, :3] *= pts[:, :, 2:3]
# to homogeneous
pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4)
if poses.shape[0] == 1:
poses = poses.repeat(T, 1, 1)
elif poses.shape[0] != T:
raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
poses = poses.to(torch.float).to(self.device)
pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3)
pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3)
pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]
return pts_proj
def w2s(self, pts, poses):
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
assert poses.shape[0] == self.frame_num
poses = poses.to(torch.float32).to(self.device)
T, N, _ = pts.shape # (T, N, 3)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1)
# Step 1: 扩展点的维度,使其变成 (T, N, 4),最后一维填充1 (齐次坐标)
ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype)
points_world_h = torch.cat([pts, ones], dim=-1)
points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1))
points_camera = points_camera_h[:, :3, :].permute(0, 2, 1)
points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1))
uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3]
# Step 5: 提取深度 (Z) 并拼接
depth = points_camera[:, :, 2:3] # (T, N, 1)
uvd = torch.cat([uv, depth], dim=-1) # (T, N, 3)
return uvd # 屏幕坐标 + 深度 (T, N, 3)
def apply_motion_on_pts(self, pts, camera_motion):
tracking_pts = self._apply_poses(pts.squeeze(), camera_motion).unsqueeze(0)
return tracking_pts
def set_intr(self, K):
if isinstance(K, np.ndarray):
K = torch.from_numpy(K)
self.intr = K.to(self.device)
def rot_poses(self, angle, axis='y'):
"""
pts (torch.Tensor): [T, N, 3]
angle (int): angle of rotation (degree)
"""
angle_rad = math.radians(angle)
angles = torch.linspace(0, angle_rad, self.frame_num)
rot_mats = torch.zeros(self.frame_num, 4, 4)
for i, theta in enumerate(angles):
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
if axis == 'x':
rot_mats[i] = torch.tensor([
[1, 0, 0, 0],
[0, cos_theta, -sin_theta, 0],
[0, sin_theta, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'y':
rot_mats[i] = torch.tensor([
[cos_theta, 0, sin_theta, 0],
[0, 1, 0, 0],
[-sin_theta, 0, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'z':
rot_mats[i] = torch.tensor([
[cos_theta, -sin_theta, 0, 0],
[sin_theta, cos_theta, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
else:
raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.")
return rot_mats.to(self.device)
def trans_poses(self, dx, dy, dz):
"""
params:
- dx: float, displacement along x axis。
- dy: float, displacement along y axis。
- dz: float, displacement along z axis。
ret:
- matrices: torch.Tensor
"""
trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1) # (n, 4, 4)
delta_x = dx / (self.frame_num - 1)
delta_y = dy / (self.frame_num - 1)
delta_z = dz / (self.frame_num - 1)
for i in range(self.frame_num):
trans_mats[i, 0, 3] = i * delta_x
trans_mats[i, 1, 3] = i * delta_y
trans_mats[i, 2, 3] = i * delta_z
return trans_mats.to(self.device)
def _look_at(self, camera_position, target_position):
# look at direction
direction = target_position - camera_position
direction /= np.linalg.norm(direction)
# calculate rotation matrix
up = np.array([0, 1, 0])
right = np.cross(up, direction)
right /= np.linalg.norm(right)
up = np.cross(direction, right)
rotation_matrix = np.vstack([right, up, direction])
rotation_matrix = np.linalg.inv(rotation_matrix)
return rotation_matrix
def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5):
"""Generate spiral camera poses
Args:
radius (float): Base radius of the spiral
forward_ratio (float): Scale factor for forward motion
backward_ratio (float): Scale factor for backward motion
rotation_times (float): Number of rotations to complete
look_at_times (float): Scale factor for look-at point distance
Returns:
torch.Tensor: Camera poses of shape [num_frames, 4, 4]
"""
# Generate spiral trajectory
t = np.linspace(0, 1, self.frame_num)
r = np.sin(np.pi * t) * radius * rotation_times
theta = 2 * np.pi * t
# Calculate camera positions
# Limit y motion for better floor/sky view
y = r * np.cos(theta) * 0.3
x = r * np.sin(theta)
z = -r
z[z < 0] *= forward_ratio
z[z > 0] *= backward_ratio
# Set look-at target
target_pos = np.array([0, 0, radius * look_at_times])
cam_pos = np.vstack([x, y, z]).T
cam_poses = []
for pos in cam_pos:
rot_mat = self._look_at(pos, target_pos)
trans_mat = np.eye(4)
trans_mat[:3, :3] = rot_mat
trans_mat[:3, 3] = pos
cam_poses.append(trans_mat[None])
camera_poses = np.concatenate(cam_poses, axis=0)
return torch.from_numpy(camera_poses).to(self.device)
def rot(self, pts, angle, axis):
"""
pts: torch.Tensor, (T, N, 2)
"""
rot_mats = self.rot_poses(angle, axis)
pts = self.apply_motion_on_pts(pts, rot_mats)
return pts
def trans(self, pts, dx, dy, dz):
if pts.shape[-1] != 3:
raise ValueError("points should be in the 3d coordinate.")
trans_mats = self.trans_poses(dx, dy, dz)
pts = self.apply_motion_on_pts(pts, trans_mats)
return pts
def spiral(self, pts, radius):
spiral_poses = self.spiral_poses(radius)
pts = self.apply_motion_on_pts(pts, spiral_poses)
return pts
def get_default_motion(self):
if self.motion_type == 'trans':
motion = self.trans_poses(0.1, 0, 0)
elif self.motion_type == 'spiral':
motion = self.spiral_poses(1)
elif self.motion_type == 'rot':
motion = self.rot_poses(-25, 'y')
else:
raise ValueError(f'camera_motion must be in [trans, spiral, rot], but get {self.motion_type}.')
return motion
class ObjectMotionGenerator:
def __init__(self, device="cuda:0"):
"""Initialize ObjectMotionGenerator
Args:
device (str): Device to run on
"""
self.device = device
self.num_frames = 49
def _get_points_in_mask(self, pred_tracks, mask):
"""Get points that fall within the mask in first frame
Args:
pred_tracks (torch.Tensor): [num_frames, num_points, 3]
mask (torch.Tensor): [H, W] binary mask
Returns:
torch.Tensor: Boolean mask of selected points [num_points]
"""
first_frame_points = pred_tracks[0] # [num_points, 3]
xy_points = first_frame_points[:, :2] # [num_points, 2]
# Convert xy coordinates to pixel indices
xy_pixels = xy_points.round().long() # Convert to integer pixel coordinates
# Clamp coordinates to valid range
xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1) # x coordinates
xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1) # y coordinates
# Get mask values at point locations
points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]] # Index using y, x order
return points_in_mask
def generate_motion(self, mask, motion_type, distance, num_frames=49):
"""Generate motion dictionary for the given parameters
Args:
mask (torch.Tensor): [H, W] binary mask
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
distance (float): Total distance to move
num_frames (int): Number of frames
Returns:
dict: Motion dictionary containing:
- mask (torch.Tensor): Binary mask
- motions (torch.Tensor): Per-frame motion vectors [num_frames, 4, 4]
"""
self.num_frames = num_frames
# Define motion template vectors
template = {
'up': torch.tensor([0, -1, 0]),
'down': torch.tensor([0, 1, 0]),
'left': torch.tensor([-1, 0, 0]),
'right': torch.tensor([1, 0, 0]),
'front': torch.tensor([0, 0, 1]),
'back': torch.tensor([0, 0, -1])
}
if motion_type not in template:
raise ValueError(f"Unknown motion type: {motion_type}")
# Move mask to device
mask = mask.to(self.device)
# Generate per-frame motion matrices
motions = []
base_vec = template[motion_type].to(self.device) * distance
for frame_idx in range(num_frames):
# Calculate interpolation factor (0 to 1)
t = frame_idx / (num_frames - 1)
# Create motion matrix for current frame
current_motion = torch.eye(4, device=self.device)
current_motion[:3, 3] = base_vec * t
motions.append(current_motion)
motions = torch.stack(motions) # [num_frames, 4, 4]
return {
'mask': mask,
'motions': motions
}
def apply_motion(self, pred_tracks, motion_dict, tracking_method="spatracker"):
"""Apply motion to selected points
Args:
pred_tracks (torch.Tensor): [num_frames, num_points, 3] for spatracker
or [T, H, W, 3] for moge
motion_dict (dict): Motion dictionary containing mask and motions
tracking_method (str): "spatracker" or "moge"
Returns:
torch.Tensor: Modified pred_tracks with same shape as input
"""
pred_tracks = pred_tracks.to(self.device).float()
if tracking_method == "moge":
T, H, W, _ = pred_tracks.shape
selected_mask = motion_dict['mask']
valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & selected_mask
valid_selected = valid_selected.reshape([-1])
modified_tracks = pred_tracks.clone().reshape(T, -1, 3)
for frame_idx in range(self.num_frames):
motion_mat = motion_dict['motions'][frame_idx]
motion_mat[0, 3] /= W
motion_mat[1, 3] /= H
points = modified_tracks[frame_idx, valid_selected]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3]
return modified_tracks
else:
points_in_mask = self._get_points_in_mask(pred_tracks, motion_dict['mask'])
modified_tracks = pred_tracks.clone()
for frame_idx in range(pred_tracks.shape[0]):
motion_mat = motion_dict['motions'][frame_idx]
points = modified_tracks[frame_idx, points_in_mask]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3]
return modified_tracks
|