Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,9 +14,18 @@ dtype = torch.bfloat16
|
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
|
| 17 |
-
vlm_pipe = ModularPipeline.from_pretrained("briaai/FIBO-VLM-prompt-to-JSON", trust_remote_code=True)
|
|
|
|
| 18 |
pipe = BriaFiboPipeline.from_pretrained("briaai/FIBO", trust_remote_code=True, torch_dtype=dtype).to(device)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
@spaces.GPU(duration=300)
|
| 21 |
def infer(
|
| 22 |
prompt,
|
|
@@ -26,7 +35,7 @@ def infer(
|
|
| 26 |
seed=42,
|
| 27 |
randomize_seed=False,
|
| 28 |
width=1024,
|
| 29 |
-
height=
|
| 30 |
guidance_scale=5,
|
| 31 |
num_inference_steps=50,
|
| 32 |
mode="generate",
|
|
@@ -35,12 +44,7 @@ def infer(
|
|
| 35 |
seed = random.randint(0, MAX_SEED)
|
| 36 |
|
| 37 |
with torch.inference_mode():
|
| 38 |
-
|
| 39 |
-
neg_output = vlm_pipe(prompt=negative_prompt)
|
| 40 |
-
neg_json_prompt = neg_output.values["json_prompt"]
|
| 41 |
-
else:
|
| 42 |
-
neg_json_prompt = ""
|
| 43 |
-
|
| 44 |
if mode == "refine":
|
| 45 |
json_prompt_str = (
|
| 46 |
json.dumps(prompt_in_json)
|
|
@@ -52,6 +56,12 @@ def infer(
|
|
| 52 |
output = vlm_pipe(prompt=prompt)
|
| 53 |
json_prompt = output.values["json_prompt"]
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
image = pipe(
|
| 56 |
prompt=json_prompt,
|
| 57 |
num_inference_steps=num_inference_steps,
|
|
|
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
|
| 17 |
+
vlm_pipe = ModularPipeline.from_pretrained("briaai/FIBO-VLM-prompt-to-JSON", trust_remote_code=True)
|
| 18 |
+
# vlm_pipe = ModularPipeline.from_pretrained("briaai/FIBO-gemini-prompt-to-JSON", trust_remote_code=True)
|
| 19 |
pipe = BriaFiboPipeline.from_pretrained("briaai/FIBO", trust_remote_code=True, torch_dtype=dtype).to(device)
|
| 20 |
|
| 21 |
+
@spaces.GPU()
|
| 22 |
+
def get_default_negative_prompt(existing_json: dict) -> str:
|
| 23 |
+
negative_prompt = ""
|
| 24 |
+
style_medium = existing_json.get("style_medium", "").lower()
|
| 25 |
+
if style_medium in ["photograph", "photography", "photo"]:
|
| 26 |
+
negative_prompt = """{'style_medium':'digital illustration','artistic_style':'non-realistic'}"""
|
| 27 |
+
return negative_prompt
|
| 28 |
+
|
| 29 |
@spaces.GPU(duration=300)
|
| 30 |
def infer(
|
| 31 |
prompt,
|
|
|
|
| 35 |
seed=42,
|
| 36 |
randomize_seed=False,
|
| 37 |
width=1024,
|
| 38 |
+
height=1024,
|
| 39 |
guidance_scale=5,
|
| 40 |
num_inference_steps=50,
|
| 41 |
mode="generate",
|
|
|
|
| 44 |
seed = random.randint(0, MAX_SEED)
|
| 45 |
|
| 46 |
with torch.inference_mode():
|
| 47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if mode == "refine":
|
| 49 |
json_prompt_str = (
|
| 50 |
json.dumps(prompt_in_json)
|
|
|
|
| 56 |
output = vlm_pipe(prompt=prompt)
|
| 57 |
json_prompt = output.values["json_prompt"]
|
| 58 |
|
| 59 |
+
if negative_prompt:
|
| 60 |
+
neg_output = vlm_pipe(prompt=negative_prompt)
|
| 61 |
+
neg_json_prompt = neg_output.values["json_prompt"]
|
| 62 |
+
else:
|
| 63 |
+
neg_json_prompt = get_default_negative_prompt(json.loads(json_prompt))
|
| 64 |
+
|
| 65 |
image = pipe(
|
| 66 |
prompt=json_prompt,
|
| 67 |
num_inference_steps=num_inference_steps,
|