import gradio as gr from PIL import Image from transformers import pipeline def convert_to_rgb(image): return image.convert('RGB') classifier = pipeline("image-classification", model="google/vit-base-patch16-224") def classify_image(image): image = convert_to_rgb(image) class_scores = classifier(image) highest_probability_class = max(class_scores, key=lambda x: x["score"]) highest_probability_class = highest_probability_class["label"] return highest_probability_class, class_scores iface = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs=["text", "json"], live=True, title="Food Image Classification", description="Classify food items in uploaded images using a pre-trained model.") iface.launch()