Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
def convert_to_rgb(image):
|
| 6 |
+
return image.convert('RGB')
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def classify_image(image):
|
| 13 |
+
image = convert_to_rgb(image)
|
| 14 |
+
class_scores = classifier(image)
|
| 15 |
+
highest_probability_class = max(class_scores, key=lambda x: x["score"])
|
| 16 |
+
highest_probability_class = highest_probability_class["label"]
|
| 17 |
+
return highest_probability_class, class_scores
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
iface = gr.Interface(fn=classify_image,
|
| 21 |
+
inputs=gr.Image(type="pil"),
|
| 22 |
+
outputs=["text", "json"],
|
| 23 |
+
live=True,
|
| 24 |
+
title="Food Image Classification",
|
| 25 |
+
description="Classify food items in uploaded images using a pre-trained model.")
|
| 26 |
+
|
| 27 |
+
iface.launch()
|