```python #!/usr/bin/env python3 """ AI Forge E-commerce Automation Code Generator Generates custom automation scripts (data pipelines, bots) with predictive ML optimization Freelancer-focused premium AI integration for high-demand clients """ import os import json import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score, classification_report from sklearn.preprocessing import LabelEncoder import joblib from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware import uvicorn import ast import subprocess import warnings warnings.filterwarnings('ignore') class EcommerceDataAnalyzer: """Analyzes e-commerce business data to predict optimal automation strategies""" def __init__(self): self.model = None self.label_encoder = LabelEncoder() self.feature_importance = {} def load_business_data(self, file_path): """Load e-commerce business data""" try: df = pd.read_csv(file_path) print(f"Loaded business data with {len(df)} records") return df except Exception as e: print(f"Error loading data: {e}") return None def extract_features(self, df): """Extract features for automation strategy prediction""" features = [] # Business metrics business_features = ['monthly_revenue', 'inventory_turnover', 'order_volume', 'customer_count'] # Process categorical variables categorical_cols = ['business_type', 'platform', 'marketing_strategy'] for col in categorical_cols: if col in df.columns: dummies = pd.get_dummies(df[col], prefix=col) features.append(dummies) # Add numerical features for feature in business_features: if feature in df.columns: features.append(df[[feature]])) # Time-based features if 'date' in df.columns: df['month'] = pd.to_datetime(df['date']).dt.month features.append(pd.get_dummies(df['month'], prefix='month')) X = pd.concat(features, axis=1) return X def prepare_automation_labels(self, df): """Prepare labels for automation strategy classification""" strategies = [] for _, row in df.iterrows(): strategy = self._determine_optimal_strategy(row) strategies.append(strategy) return self.label_encoder.fit_transform(strategies) def _determine_optimal_strategy(self, business_data): """Determine optimal automation strategy based on business metrics""" revenue = business_data.get('monthly_revenue', 0) inventory_turnover = business_data.get('inventory_turnover', 0) order_volume = business_data.get('order_volume', 0) # Define strategy categories if revenue > 50000 and inventory_turnover < 4: return "inventory_optimization" elif revenue > 100000 and order_volume > 1000: return "advanced_ai_pipeline" elif revenue > 25000 and order_volume > 500: return "marketing_automation" elif order_volume > 2000: return "data_processing_bot" elif revenue > 10000: return "basic_automation" else: return "manual_processes" def train_strategy_predictor(self, X, y): """Train Random Forest model to predict optimal automation strategies""" X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) self.model = RandomForestClassifier( n_estimators=100, max_depth=10, random_state=42 ) # Train model self.model.fit(X_train, y_train) # Evaluate model y_pred = self.model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) # Feature importance self.feature_importance = dict(zip(X.columns, self.model.feature_importances_)) print(f"Strategy predictor trained - Accuracy: {accuracy:.4f}") # Cross-validation cv_scores = cross_val_score(self.model, X, y, cv=5) print(f"Cross-validation scores: {cv_scores}") print(f"Mean CV accuracy: {cv_scores.mean():.4f}") return self.model def predict_optimal_strategy(self, business_data): """Predict optimal automation strategy for new business""" if self.model is None: print("Model not trained yet") return None X_new = self.extract_features(business_data) strategy_idx = self.model.predict(X_new)[0] strategy = self.label_encoder.inverse_transform([strategy_idx])[0] return strategy class AutomationCodeGenerator: """Generates custom automation code based on predicted strategies""" def __init__(self): self.templates = self._load_code_templates() def _load_code_templates(self): """Load code templates for different automation strategies""" templates = { "inventory_optimization": { "description": "AI-powered inventory management and restocking", "language": "python", "template": '''#!/usr/bin/env python3 """ AI-Powered Inventory Optimization System Generated by AI Forge for {business_name} """ import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') class InventoryOptimizer: """AI-powered inventory optimization system""" def __init__(self): self.model = None def load_inventory_data(self, file_path): """Load inventory and sales data""" try: df = pd.read_csv(file_path) return df except Exception as e: print(f"Error loading inventory data: {e}") return None def train_demand_predictor(self, df): """Train demand prediction model""" features = ['product_id', 'current_stock', 'lead_time', 'seasonality_factor'] return df[features] def predict_restocking(self, inventory_data): """Predict optimal restocking quantities""" # Implementation details pass def main(): optimizer = InventoryOptimizer() # Add your implementation here pass if __name__ == "__main__": main() ''' }, "advanced_ai_pipeline": { "description": "Multi-stage AI pipeline for e-commerce operations", "language": "python", "template": '''#!/usr/bin/env python3 """ Advanced AI Pipeline for E-commerce Operations Generated by AI Forge for {business_name} """ import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier import joblib class AdvancedAIPipeline: """Comprehensive AI pipeline for e-commerce automation""" def __init__(self): self.models = {{}} def process_data_pipeline(self): """Multi-stage data processing pipeline""" pass def main(): pipeline = AdvancedAIPipeline() pass if __name__ == "__main__": main() ''' }, "marketing_automation": { "description": "Automated marketing campaign management", "language": "python", "template": '''#!/usr/bin/env python3 """ Marketing Automation System Generated by AI Forge for {business_name} """ import pandas as pd import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from datetime import datetime, timedelta import json class MarketingAutomator: """AI-driven marketing campaign automation""" def __init__(self): self.campaign_data = {{}} def automate_campaigns(self): """Automated campaign management""" pass if __name__ == "__main__": automator = MarketingAutomator() # Implementation pass ''' }, "data_processing_bot": { "description": "Intelligent data processing and analysis bot", "language": "python", "template": '''#!/usr/bin/env python3 """ Data Processing Automation Bot Generated by AI Forge for {business_name} """ import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler import schedule import time class DataProcessingBot: """Automated data processing and analysis system""" def __init__(self): self.processed_data = {{}} def run_data_pipeline(self): """Complete data processing pipeline""" pass def main(): bot = DataProcessingBot() # Add implementation pass if __name__ == "__main__": main() ''' } } return templates def generate_custom_code(self, strategy, business_name, custom_params=None): """Generate custom automation code based on strategy""" if strategy not in self.templates: raise ValueError(f"Unknown strategy: {strategy}") template = self.templates[strategy] code = template["template"].format( business_name=business_name, custom_params=custom_params or {} ) return { "strategy": strategy, "description": template["description"], "language": template["language"], "code": code } class CodeValidator: """Validates generated code for syntax correctness""" def __init__(self): pass def validate_python_syntax(self, code): """Validate Python code syntax using ast module""" try: ast.parse(code) return True except SyntaxError as e: return False, str(e) def test_code_execution(self, code_file_path): """Test if generated code can be executed without errors""" try: result = subprocess.run( ['python', '-m', 'py_compile', code_file_path], capture_output=True, text=True, timeout=30 ) if result.returncode == 0: return True, "Code compiled successfully" else: return False, result.stderr def check_dependencies(self, code): """Check for required dependencies in the code""" dependencies = set() # Simple dependency extraction (enhance for production) if 'pandas' in code: dependencies.add('pandas') if 'numpy' in code: dependencies.add('numpy') if 'sklearn' in code: dependencies.add('scikit-learn') if 'joblib' in code: dependencies.add('joblib') if 'requests' in code: dependencies.add('requests') return list(dependencies) class DeploymentManager: """Manages deployment of generated automation systems""" def __init__(self): self.deployment_templates = self._load_deployment_templates() def _load_deployment_templates(self): """Load deployment configuration templates""" templates = { "docker": { "template": '''FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY . . CMD ["python", "generated_system.py"] }, "fastapi": { "template": '''from fastapi import FastAPI import uvicorn app = FastAPI() @app.get("/") def root(): return {{"message": "AI Automation System Deployed"}} } return templates def generate_deployment_config(self, strategy, system_name): """Generate deployment configuration files""" if strategy not in self.deployment_templates: return None return self.deployment_templates[strategy]["template"] class EcommerceAutomationAPI: """FastAPI microservice for the automation code generation system""" def __init__(self): self.data_analyzer = EcommerceDataAnalyzer() self.code_generator = AutomationCodeGenerator() self.validator = CodeValidator() self.deployment_manager = DeploymentManager() def initialize_system(self): """Initialize the complete automation system""" print("Initializing E-commerce Automation Code Generator...") # Load sample data for training sample_data = self._generate_sample_business_data() # Extract features and labels X = self.data_analyzer.extract_features(sample_data) y = self.data_analyzer.prepare_automation_labels(sample_data) # Train strategy predictor self.data_analyzer.train_strategy_predictor(X, y) print("System initialized successfully") def _generate_sample_business_data(self): """Generate sample business data for system training""" sample_data = [] business_types = ['clothing', 'electronics', 'home_goods', 'beauty', 'sports']] for i in range(100): sample_data.append({ 'business_id': i+1, 'business_type': np.random.choice(business_types), 'monthly_revenue': np.random.randint(5000, 200000), 'inventory_turnover': np.random.uniform(2, 8), 'order_volume': np.random.randint(100, 5000), 'customer_count': np.random.randint(50, 5000), 'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']), 'marketing_strategy': np.random.choice(['social_media', 'email', 'seo', 'ppc']), 'date': pd.Timestamp('2024-01-01') + pd.Timedelta(days=i), 'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']), 'monthly_revenue': np.random.randint(5000, 200000), 'inventory_turnover': np.random.uniform(2, 8), 'order_volume': np.random.randint(100, 5000), 'customer_count': np.random.randint(50, 5000), 'inventory_value': np.random.randint(10000, 500000), 'employee_count': np.random.randint(1, 50) }) return pd.DataFrame(sample_data) def process_automation_request(self, business_data): """Complete workflow: analyze business data, predict strategy, generate code" # Predict optimal automation strategy strategy = self.data_analyzer.predict_optimal_strategy(business_data) # Generate custom code code_result = self.code_generator.generate_custom_code( strategy, business_data.get('business_name', 'Client Business'), business_data.get('custom_params', {}) ) # Validate code syntax is_valid = self.validator.validate_python_syntax(code_result["code"]) if not is_valid: raise ValueError("Generated code has syntax errors") # Generate deployment configuration deployment_config = self.deployment_manager.generate_deployment_config(strategy, business_data.get('business_name'))) return { "strategy": strategy, "generated_code": code_result, "validation": { "syntax_valid": is_valid, "dependencies": self.validator.check_dependencies(code_result["code"]) } # FastAPI Application app = FastAPI( title="AI Forge E-commerce Automation Generator", description="Premium AI-powered code generation for e-commerce automation", version="1.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) # Initialize system automation_system = EcommerceAutomationAPI() @app.on_event("startup") async def startup_event(): """Initialize system on startup""" automation_system.initialize_system() class AutomationRequest: business_name: str monthly_revenue: float order_volume: int inventory_turnover: float business_type: str custom_params: dict = {} class AutomationResponse: success: bool message: str strategy: str generated_code: dict = None deployment_config: str = None @app.get("/") async def root(): return {"message": "AI Forge E-commerce Automation Code Generator API"} @app.post("/api/generate-automation", response_model=AutomationResponse) async def generate_automation(request: AutomationRequest): """Generate custom automation code for e-commerce business""" try: business_data = { 'business_name': request.business_name, 'monthly_revenue': request.monthly_revenue, 'order_volume': request.order_volume, 'inventory_turnover': request.inventory_turnover, 'business_type': request.business_type, 'custom_params': request.custom_params } result = automation_system.process_automation_request(business_data) return AutomationResponse( success=True, message=f"Successfully generated {result['strategy']} automation system") strategy=result['strategy'], generated_code=result['generated_code'], deployment_config=result.get('deployment_config') ) except Exception as e: raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}") @app.get("/api/strategy-recommendation") async def get_strategy_recommendation( monthly_revenue: float, order_volume: int, inventory_turnover: float ): """Get automation strategy recommendation based on business metrics""" try: sample_business = pd.DataFrame([{ 'monthly_revenue': monthly_revenue, 'order_volume': order_volume, inventory_turnover: float ): """Generate strategy recommendation based on business metrics""" business_data = pd.DataFrame([{ 'monthly_revenue': monthly_revenue, 'order_volume': order_volume, 'inventory_turnover': inventory_turnover, 'business_type': 'electronics', # Example 'platform': 'shopify', # Example 'customer_count': 1000, # Example 'business_type': 'electronics', 'inventory_turnover': inventory_turnover }]) strategy = automation_system.data_analyzer.predict_optimal_strategy(business_data) return {"strategy": strategy} @app.get("/api/health") async def health_check(): return {"status": "healthy", "service": "ecommerce_automation_generator"} def generate_sample_business_data(): """Generate comprehensive sample business data for testing""" businesses = [] for i in range(50): businesses.append({ 'business_id': i+1, 'business_name': f"Sample Business {i+1}", 'monthly_revenue': monthly_revenue, 'order_volume': order_volume, 'inventory_turnover': np.random.uniform(2, 8), 'monthly_revenue': np.random.randint(10000, 150000), 'inventory_turnover': np.random.uniform(3, 7), 'customer_count': np.random.randint(100, 3000), 'business_type': np.random.choice(['clothing', 'electronics', 'home_goods', 'beauty', 'sports']), 'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']), 'marketing_strategy': np.random.choice(['social_media', 'email', 'seo']), 'inventory_value': np.random.randint(50000, 300000), 'employee_count': np.random.randint(2, 25) }) df = pd.DataFrame(businesses) df.to_csv("./data/sample_businesses.csv", index=False) print("Sample business data generated") def main(): """Main execution function""" print("="*70) print("AI FORGE E-COMMERCE AUTOMATION CODE GENERATOR") print("Optimized for 220% YoY demand growth in AI automation") print("Premium service for freelancers and high-demand clients") print("="*70) # Generate sample data generate_sample_business_data() # Initialize and test the system automation_system.initialize_system() # Sample automation request sample_request = AutomationRequest( business_name="TechGadgets Inc.", monthly_revenue=125000, order_volume=2870, inventory_turnover=4.2, business_type="electronics", custom_params={ 'api_key': 'your_api_key_here', 'webhook_url': 'https://your-webhook.com' ) # Process sample request result = automation_system.process_automation_request({ 'business_name': sample_request.business_name, 'monthly_revenue': sample_request.monthly_revenue, 'order_volume': sample_request.order_volume, 'inventory_turnover': sample_request.inventory_turnover, 'business_type': sample_request.business_type, 'custom_params': sample_request.custom_params ) print(f"Generated {result['strategy']} automation system") print(f"Code validation: {result['validation']['syntax_valid']}") print(f"Dependencies: {result['validation']['dependencies']}") print("\nSystem ready for premium client automation projects!") print("API endpoints available at http://localhost:8000") # Start the FastAPI server uvicorn.run( "ecommerce_automation_generator:app", host="0.0.0.0", port=8000, reload=True ) if __name__ == "__main__": main() ```