```python #!/usr/bin/env python3 """ AI Forge E-commerce Image Generator Stable Diffusion + Predictive ML for personalized product mockups Optimized for 220% YoY demand growth in visual content creation """ import os import torch import pandas as pd import numpy as np from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt from PIL import Image import io import base64 import warnings warnings.filterwarnings('ignore') # Configuration class Config: """Configuration parameters for the image generation system""" STABLE_DIFFUSION_MODEL = "runwayml/stable-diffusion-v1-5" IMAGE_SIZE = (512, 512) MAX_LENGTH = 77 BATCH_SIZE = 4 EPOCHS = 50 LEARNING_RATE = 1e-4 PREDICTION_MODEL_PATH = "./models/style_predictor.h5" TRAINING_DATA_PATH = "./data/ecommerce_sales.csv" OUTPUT_DIR = "./generated_images" # Style categories for prediction STYLE_CATEGORIES = ['minimalist', 'vintage', 'modern', 'luxury', 'tech', 'sporty'] COLOR_CATEGORIES = ['blue', 'red', 'green', 'black', 'white', 'pastel', 'neon'] PRODUCT_TYPES = ['clothing', 'electronics', 'home_decor', 'beauty', 'accessories'] class StylePredictor: """TensorFlow model for predicting trending styles and colors""" def __init__(self, input_dim): self.input_dim = input_dim self.model = None def build_model(self): """Build the style prediction model""" model = keras.Sequential([ layers.Dense(256, activation='relu', input_shape=(input_dim,)), layers.Dropout(0.3), layers.Dense(128, activation='relu'), layers.Dropout(0.2), layers.Dense(64, activation='relu'), layers.Dense(len(Config.STYLE_CATEGORIES) + len(Config.COLOR_CATEGORIES)), layers.Activation('sigmoid') ]) model.compile( optimizer=keras.optimizers.Adam(learning_rate=Config.LEARNING_RATE), loss='binary_crossentropy', metrics=['accuracy'] ) self.model = model return model def train(self, X_train, y_train, X_val=None, y_val=None): """Train the style prediction model""" callbacks = [ keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True), keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5), keras.callbacks.ModelCheckpoint( Config.PREDICTION_MODEL_PATH, save_best_only=True, monitor='val_loss' if X_val is not None else 'loss' ) ] history = self.model.fit( X_train, y_train, batch_size=Config.BATCH_SIZE, epochs=Config.EPOCHS, validation_data=(X_val, y_val) if X_val is not None else None, callbacks=callbacks, verbose=1 ) return history def predict_trends(self, customer_data): """Predict trending styles and colors for customer segment""" predictions = self.model.predict(customer_data) # Split predictions into styles and colors style_predictions = predictions[:, :len(Config.STYLE_CATEGORIES)] color_predictions = predictions[:, len(Config.STYLE_CATEGORIES):] return style_predictions, color_predictions class EcommerceDataProcessor: """Process e-commerce sales data for trend prediction""" def __init__(self): self.feature_columns = [] def load_and_preprocess_data(self, file_path): """Load and preprocess e-commerce sales data""" try: df = pd.read_csv(file_path) print(f"Loaded dataset with {len(df)} rows") return df except Exception as e: print(f"Error loading data: {e}") return None def extract_features(self, df): """Extract features from e-commerce data""" features = [] # Demographic features demographic_features = ['age', 'income_level', 'location_urban', 'gender_encoded'] # Time-based features df['purchase_month'] = pd.to_datetime(df['purchase_date']).dt.month features.append(pd.get_dummies(df['purchase_month'], prefix='month')) # Product features product_features = ['price', 'category_encoded', 'brand_popularity'] # Combine all features for feature in demographic_features + ['purchase_month', 'price', 'category_encoded', 'brand_popularity']: if feature in df.columns: features.append(df[[feature]])) # One-hot encode categorical variables categorical_cols = ['region', 'device_type', 'marketing_channel'] for col in categorical_cols: if col in df.columns: dummies = pd.get_dummies(df[col], prefix=col) features.append(dummies) X = pd.concat(features, axis=1) self.feature_columns = X.columns.tolist() return X def prepare_training_labels(self, df): """Prepare training labels for style and color trends""" # Create binary labels for styles and colors based on sales performance labels = [] for _, row in df.iterrows(): # Style preferences (based on product attributes) style_vector = [0] * len(Config.STYLE_CATEGORIES) color_vector = [0] * len(Config.COLOR_CATEGORIES) # For each product, determine dominant style and color if row['sales_rank'] <= 100: # Top selling products # Analyze product description for style keywords description = str(row.get('product_description', '')).lower() for i, style in enumerate(Config.STYLE_CATEGORIES): if style in description: style_vector[i] = 1 # Color analysis from product data color_data = str(row.get('color_data', '')).lower() for j, color in enumerate(Config.COLOR_CATEGORIES): if color in description or color in str(row.get('primary_color', '')).lower(): color_vector[j] = 1 labels.append(style_vector + color_vector) return np.array(labels) class StableDiffusionGenerator: """Stable Diffusion image generator for e-commerce mockups""" def __init__(self): self.pipeline = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") def load_model(self): """Load Stable Diffusion model""" try: self.pipeline = StableDiffusionPipeline.from_pretrained( Config.STABLE_DIFFUSION_MODEL, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config( self.pipeline.scheduler.config ) self.pipeline = self.pipeline.to(self.device) print("Stable Diffusion model loaded successfully") except Exception as e: print(f"Error loading model: {e}") def generate_product_mockup(self, prompt, style_weights=None, color_weights=None): """Generate product mockup with style and color conditioning""" # Enhance prompt based on predicted trends enhanced_prompt = self._enhance_prompt(prompt, style_weights, color_weights) # Generate image with torch.autocast(self.device.type): image = self.pipeline( prompt, height=Config.IMAGE_SIZE[0], width=Config.IMAGE_SIZE[1], num_inference_steps=25, guidance_scale=7.5 ).images[0] return image def _enhance_prompt(self, base_prompt, style_weights, color_weights): """Enhance prompt with style and color conditioning""" if style_weights is not None: # Get top predicted styles top_style_indices = np.argsort(style_weights)[-2:] # Top 2 styles top_colors_indices = np.argsort(color_weights)[-2:] # Add style descriptors style_descriptors = [] for idx in top_style_indices: style_descriptors.append(Config.STYLE_CATEGORIES[idx]) # Add color descriptors color_descriptors = [] for idx in top_colors_indices: color_descriptors.append(Config.COLOR_CATEGORIES[idx]) enhanced_prompt = f"{base_prompt}, {', '.join(style_descriptors)} style, colors: {', '.join(color_descriptors)}" return enhanced_prompt def generate_batch_mockups(self, prompts, style_predictions, color_predictions): """Generate multiple product mockups in batch""" images = [] for i, prompt in enumerate(prompts): style_weights = style_predictions[i] if i < len(style_predictions) else None color_weights = color_predictions[i] if i < len(color_predictions) else None image = self.generate_product_mockup(prompt, style_weights, color_weights) images.append(image) return images class EcommerceImageAPI: """FastAPI integration for the e-commerce image generation system""" def __init__(self): self.data_processor = EcommerceDataProcessor() self.style_predictor = None self.image_generator = StableDiffusionGenerator() def initialize_system(self): """Initialize the complete system""" print("Initializing E-commerce Image Generation System...") # Load data df = self.data_processor.load_and_preprocess_data(Config.TRAINING_DATA_PATH) if df is not None: # Prepare features and labels X = self.data_processor.extract_features(df) y = self.data_processor.prepare_training_labels(df) # Initialize and train style predictor self.style_predictor = StylePredictor(X.shape[1]) self.style_predictor.build_model() # Split data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # Train model print("Training style prediction model...") history = self.style_predictor.train(X_train, y_train, X_test, y_test) # Evaluate model test_loss, test_accuracy = self.style_predictor.model.evaluate(X_test, y_test) print(f"Model trained - Test Accuracy: {test_accuracy:.4f}") # Load image generator self.image_generator.load_model() print("System initialized successfully") def predict_and_generate(self, customer_segment_data, base_prompts): """Complete workflow: predict trends and generate images""" # Predict styles and colors style_predictions, color_predictions = self.style_predictor.predict_trends(customer_segment_data) # Generate images images = self.image_generator.generate_batch_mockups( base_prompts, style_predictions, color_predictions ) return images, style_predictions, color_predictions # FastAPI Integration from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List, Optional import uvicorn app = FastAPI(title="AI Forge E-commerce Image Generator") # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) class GenerationRequest(BaseModel): customer_data: List[dict] base_prompts: List[str] num_images: int = 1 class GenerationResponse(BaseModel): success: bool message: str generated_images: Optional[List[str]] = None predicted_styles: Optional[List[str]] = None predicted_colors: Optional[List[str]] = None # Initialize system ecommerce_system = EcommerceImageAPI() @app.on_event("startup") async def startup_event(): """Initialize system on startup""" ecommerce_system.initialize_system() @app.get("/") async def root(): return {"message": "AI Forge E-commerce Image Generator API"} @app.post("/api/generate-mockups", response_model=GenerationResponse) async def generate_mockups(request: GenerationRequest): """Generate product mockups based on predicted trends""" try: # Convert customer data to DataFrame customer_df = pd.DataFrame(request.customer_data) # Process customer data X_customer = ecommerce_system.data_processor.extract_features(customer_df) # Generate images images, style_preds, color_preds = ecommerce_system.predict_and_generate( X_customer, request.base_prompts ) # Convert images to base64 for API response base64_images = [] for image in images: buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() base64_images.append(img_str) # Get top predicted styles and colors top_styles = [] top_colors = [] for style_pred in style_preds: top_indices = np.argsort(style_pred)[-2:] top_styles.append([Config.STYLE_CATEGORIES[i] for i in top_indices]) top_colors = [[Config.COLOR_CATEGORIES[i] for i in np.argsort(color_pred)[-2:]] for color_pred in color_preds] return GenerationResponse( success=True, message=f"Successfully generated {len(images)} mockups") generated_images=base64_images, predicted_styles=top_styles, predicted_colors=top_colors ) except Exception as e: raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}") @app.get("/api/health") async def health_check(): return {"status": "healthy", "service": "ecommerce_image_generator"} def main(): """Main execution function""" print("="*60) print("AI FORGE E-COMMERCE IMAGE GENERATOR") print("Optimized for 220% YoY demand growth") print("="*60) # Initialize and test the system system = EcommerceImageAPI() system.initialize_system() # Sample generation print("\nGenerating sample mockups...") sample_customer_data = [ { 'age': 35, 'income_level': 4, 'location_urban': 1, 'gender_encoded': 0, 'region': 'north_america', 'device_type': 'mobile', 'marketing_channel': 'social_media', 'price': 89.99, 'category_encoded': 2, 'brand_popularity': 8 } ] sample_prompts = [ "professional product mockup for modern e-commerce website" ] images, styles, colors = system.predict_and_generate( pd.DataFrame(sample_customer_data), sample_prompts ) print(f"Generated {len(images)} images successfully") print(f"Predicted top styles: {styles}") print(f"Predicted top colors: {colors}") # Save sample images os.makedirs(Config.OUTPUT_DIR, exist_ok=True) for i, image in enumerate(images): image_path = os.path.join(Config.OUTPUT_DIR, f"sample_mockup_{i+1}.png") image.save(image_path) print(f"Saved sample image: {image_path}") print("\nSystem ready for production deployment!") print("API endpoints available at http://localhost:8000") if __name__ == "__main__": # Run the main function for testing main() # Start the FastAPI server uvicorn.run( "ecommerce_image_generator:app", host="0.0.0.0", port=8000, reload=True ) ```