```python #!/usr/bin/env python3 """ AI Forge Generative Marketing Image Generator PyTorch-based Stable Diffusion fine-tuned for ad banners with Prophet forecasting Optimized for 220% YoY demand growth in personalized content """ import os import torch import pandas as pd import numpy as np from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from transformers import AutoTokenizer, AutoModelForCausalLM from prophet import Prophet import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import io import base64 import warnings from datetime import datetime, timedelta import json warnings.filterwarnings('ignore') class CampaignDataProcessor: """Process historical campaign data for performance prediction""" def __init__(self): self.feature_columns = [] def load_campaign_data(self, file_path): """Load historical campaign performance data""" try: df = pd.read_csv(file_path) print(f"Loaded campaign data with {len(df)} records") return df except Exception as e: print(f"Error loading campaign data: {e}") return None def prepare_time_series_data(self, df): """Prepare time series data for Prophet forecasting""" # Aggregate daily performance df['date'] = pd.to_datetime(df['date']) daily_performance = df.groupby('date').agg({ 'clicks': 'sum', 'impressions': 'sum', 'conversions': 'sum', 'spend': 'sum' ).reset_index() # Calculate engagement metrics daily_performance['ctr'] = daily_performance['clicks'] / daily_performance['impressions'] daily_performance['conversion_rate'] = daily_performance['conversions'] / daily_performance['clicks'] daily_performance['cpc'] = daily_performance['spend'] / daily_performance['clicks'] daily_performance['engagement_score'] = ( daily_performance['ctr'] * 0.4 + daily_performance['conversion_rate'] * 0.6 ) return daily_performance def extract_campaign_features(self, df): """Extract features for campaign performance prediction""" features = [] # Campaign metadata campaign_features = ['campaign_type', 'target_audience', 'creative_format'] # Performance features performance_features = ['ctr', 'conversion_rate', 'cpc'] # Combine features for feature in campaign_features + performance_features: if feature in df.columns: if df[feature].dtype == 'object': dummies = pd.get_dummies(df[feature], prefix=feature) features.append(dummies) # Date-based features df['day_of_week'] = df['date'].dt.dayofweek df['month'] = df['date'].dt.month df['quarter'] = df['date'].dt.quarter # Create feature matrix X = pd.concat(features, axis=1) self.feature_columns = X.columns.tolist() return X class CampaignPerformancePredictor: """Prophet-based time series forecasting for campaign performance""" def __init__(self): self.model = None def train_prophet_model(self, df): """Train Prophet model on historical campaign data""" # Prepare data for Prophet prophet_df = df[['date', 'engagement_score']].rename( columns={'date': 'ds', 'engagement_score': 'y' ) # Initialize and train Prophet model self.model = Prophet( yearly_seasonality=True, weekly_seasonality=True, daily_seasonality=False, changepoint_prior_scale=0.05 ) # Add custom seasonality for marketing cycles self.model.add_seasonality(name='monthly', period=30.5, fourier_order=5) # Fit model self.model.fit(prophet_df) print("Prophet model trained successfully") return self.model def forecast_performance(self, periods=30): """Forecast campaign performance for future periods""" if self.model is None: print("Model not trained yet") return None # Create future dataframe future = self.model.make_future_dataframe(periods=periods) # Make predictions forecast = self.model.predict(future) return forecast def get_performance_insights(self, forecast): """Extract insights from forecast for creative conditioning""" # Calculate forecast statistics latest_prediction = forecast.iloc[-1] avg_engagement = forecast['yhat'].mean() trend_direction = 'increasing' if forecast['trend'].iloc[-1] > forecast['trend'].iloc[0] else 'decreasing' # Performance categories based on engagement if avg_engagement > 0.7: performance_level = 'high' creative_brief = "Create vibrant, attention-grabbing visuals with bold colors and dynamic compositions" elif avg_engagement > 0.5: performance_level = 'medium' creative_brief = "Use balanced, professional designs with moderate color saturation" else: performance_level = 'low' creative_brief = "Focus on clear messaging and simple, clean layouts" else: performance_level = 'baseline' creative_brief = "Standard clean designs with clear calls-to-action" insights = { 'performance_level': performance_level, 'predicted_engagement': avg_engagement, 'trend_direction': trend_direction, 'creative_brief': creative_brief ) return insights class MarketingImageGenerator: """Fine-tuned Stable Diffusion for marketing ad banners""" def __init__(self, model_name="runwayml/stable-diffusion-v1-5"): self.model_name = model_name self.pipeline = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") def load_model(self): """Load and configure Stable Diffusion pipeline""" try: self.pipeline = StableDiffusionPipeline.from_pretrained( self.model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ) # Optimize scheduler for faster inference self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config( self.pipeline.scheduler.config ) self.pipeline = self.pipeline.to(self.device) print("Stable Diffusion model loaded successfully") except Exception as e: print(f"Error loading model: {e}") def generate_marketing_banner(self, base_prompt, performance_insights, dimensions=(1200, 400)): """Generate marketing banner conditioned on performance predictions""" # Enhance prompt based on performance insights enhanced_prompt = self._condition_prompt_on_performance(base_prompt, performance_insights) # Generate image with conditioning with torch.autocast(self.device.type): image = self.pipeline( enhanced_prompt, height=dimensions[1], width=dimensions[0], num_inference_steps=20, guidance_scale=7.5 ).images[0] return image def _condition_prompt_on_performance(self, base_prompt, insights): """Condition the generation prompt on performance predictions""" performance_level = insights['performance_level'] creative_brief = insights['creative_brief'] # Style conditioning based on performance level style_mappings = { 'high': { 'style_descriptors': ['vibrant', 'dynamic', 'eye-catching', 'bold'], 'color_palette': ['saturated colors', 'high contrast', 'vivid tones'], 'composition': ['professional layout', 'balanced design', 'clear visual hierarchy'] }, 'medium': { 'style_descriptors': ['balanced', 'professional', 'moderate saturation'], 'color_palette': ['moderate contrast', 'professional colors'] }, 'low': { 'style_descriptors': ['clean', 'simple', 'minimalist'], 'composition': ['clear messaging', 'simple layout', 'readable typography'] }, 'baseline': { 'style_descriptors': ['standard', 'clear', 'professional'], 'color_palette': ['neutral colors', 'soft contrast'] } } style_config = style_mappings.get(performance_level, style_mappings['baseline']) # Build enhanced prompt enhanced_prompt = f""" Marketing ad banner for {base_prompt}. Style: {', '.join(style_config['style_descriptors'])}. Colors: {', '.join(style_config['color_palette'])}. Composition: {', '.join(style_config['composition'])}. Creative brief: {creative_brief}. Professional quality, high resolution, marketing ready. """ return enhanced_prompt.strip() def generate_campaign_batch(self, campaign_prompts, performance_insights_list, dimensions=(1200, 400)): """Generate multiple banners for a campaign""" images = [] for i, prompt in enumerate(campaign_prompts): insights = performance_insights_list[i] if i < len(performance_insights_list) else insights image = self.generate_marketing_banner(prompt, insights, dimensions) images.append(image) return images class MarketingCreativeConditioner: """Condition creative generation on performance predictions and audience data""" def __init__(self): self.performance_categories = { 'high': {'engagement_threshold': 0.7, 'color_intensity': 'high', 'visual_complexity': 'dynamic']} def create_creative_brief(self, performance_insights, audience_data=None): """Create detailed creative brief for image generation""" brief = { 'target_performance': performance_insights['predicted_engagement'], 'creative_direction': performance_insights['creative_brief'], 'performance_level': performance_insights['performance_level'] } # Add audience-specific conditioning if audience_data: audience_type = audience_data.get('audience_type', 'general') audience_conditioning = { 'millenials': ['modern', 'trendy', 'social_media_friendly'], 'professionals': ['sophisticated', 'clean', 'corporate'], 'families': ['warm', 'friendly', 'approachable'] } audience_styles = audience_conditioning.get(audience_type, ['professional']) brief['audience_styles'] = audience_styles return brief class RealTimeMarketingAPI: """FastAPI integration for real-time marketing image generation""" def __init__(self): self.data_processor = CampaignDataProcessor() self.performance_predictor = CampaignPerformancePredictor() self.image_generator = MarketingImageGenerator() self.creative_conditioner = MarketingCreativeConditioner() def initialize_system(self): """Initialize the complete marketing AI system""" print("Initializing Marketing AI System...") # Load and prepare data df = self.data_processor.load_campaign_data("./data/marketing_campaigns.csv") if df is not None: # Prepare time series data ts_data = self.data_processor.prepare_time_series_data(df) # Train performance predictor self.performance_predictor.train_prophet_model(ts_data) print("Performance predictor trained successfully") # Load image generator self.image_generator.load_model() print("Marketing AI System initialized and ready for real-time use") def process_campaign_request(self, campaign_data, base_prompts, forecast_periods=30): """Complete workflow: predict performance and generate conditioned images""" # Forecast campaign performance forecast = self.performance_predictor.forecast_performance(forecast_periods) # Get performance insights performance_insights = self.performance_predictor.get_performance_insights(forecast) # Generate images conditioned on predictions images = self.image_generator.generate_campaign_batch( base_prompts, [performance_insights] * len(base_prompts) ) return images, performance_insights # FastAPI Integration from fastapi import FastAPI, HTTPException, UploadFile, File from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse import uvicorn app = FastAPI( title="AI Forge Marketing Image Generator", description="Real-time generative AI for marketing ad banners with Prophet forecasting", version="1.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) # Initialize system marketing_system = RealTimeMarketingAPI() @app.on_event("startup") async def startup_event(): """Initialize system on startup""" marketing_system.initialize_system() class CampaignRequest(BaseModel): campaign_name: str target_audience: str campaign_type: str base_prompts: List[str] forecast_days: int = 30 class CampaignResponse(BaseModel): success: bool message: str generated_images: List[str] = [] performance_insights: dict = {} creative_brief: dict = {} @app.get("/") async def root(): return {"message": "AI Forge Marketing Image Generator API"} @app.post("/api/generate-campaign-banners", response_model=CampaignResponse) async def generate_campaign_banners(request: CampaignRequest): """Generate marketing banners conditioned on performance forecasts""" try: # Generate performance forecast forecast = marketing_system.performance_predictor.forecast_performance(request.forecast_days) # Get performance insights performance_insights = marketing_system.performance_predictor.get_performance_insights(forecast) # Create creative brief creative_brief = marketing_system.creative_conditioner.create_creative_brief( performance_insights, {'audience_type': request.target_audience} ) # Generate images images = marketing_system.image_generator.generate_campaign_batch( request.base_prompts, [performance_insights] * len(request.base_prompts) ) # Convert images to base64 for API response base64_images = [] for image in images: buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() base64_images.append(img_str) return CampaignResponse( success=True, message=f"Successfully generated {len(images)} campaign banners") generated_images=base64_images, performance_insights=performance_insights, creative_brief=creative_brief ) except Exception as e: raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}") @app.post("/api/upload-campaign-data") async def upload_campaign_data(file: UploadFile = File(...)): """Upload historical campaign data for model retraining""" try: # Save uploaded file file_location = f"./data/uploaded_{file.filename}" with open(file_location, "wb+") as file_object: file_object.write(file.file.read()) # Retrain model with new data marketing_system.initialize_system() return JSONResponse( content={"success": True, "message": "Campaign data uploaded and model retrained") except Exception as e: raise HTTPException(status_code=500, detail=f"Upload error: {str(e)}") @app.get("/api/performance-forecast") async def get_performance_forecast(days: int = 30): """Get performance forecast for the next N days""" try: forecast = marketing_system.performance_predictor.forecast_performance(days) # Convert forecast to JSON-serializable format forecast_data = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].to_dict('records') return JSONResponse( content={ "success": True, "forecast_periods': days, 'predictions': forecast_data } ) except Exception as e: raise HTTPException(status_code=500, detail=f"Forecast error: {str(e)}") @app.get("/api/health") async def health_check(): return {"status": "healthy", "service": "marketing_image_generator"} def generate_sample_data(): """Generate sample campaign data for testing""" dates = pd.date_range(start='2023-01-01', end='2024-01-01', freq='D') sample_data = [] for date in dates: sample_data.append({ 'date': date.strftime('%Y-%m-%d'), 'campaign_type': np.random.choice(['social_media', 'search_engine', 'email', 'display']), 'clicks': np.random.randint(100, 5000), 'impressions': np.random.randint(10000, 500000), 'conversions': np.random.randint(10, 500), 'spend': np.random.uniform(100, 5000), 'target_audience': np.random.choice(['millenials', 'professionals', 'families', 'students']), 'creative_format': np.random.choice(['banner', 'video', 'carousel', 'story']), 'ctr': np.random.uniform(0.01, 0.05), 'conversion_rate': np.random.uniform(0.02, 0.15), 'cpc': np.random.uniform(0.5, 5.0) }) df = pd.DataFrame(sample_data) df.to_csv("./data/marketing_campaigns.csv", index=False) print("Sample campaign data generated") def main(): """Main execution function""" print("="*70) print("AI FORGE MARKETING IMAGE GENERATOR") print("Optimized for 220% YoY demand growth in personalized content") print("="*70) # Generate sample data generate_sample_data() # Initialize and test the system marketing_system.initialize_system() # Sample campaign generation print("\nGenerating sample campaign banners...") sample_request = CampaignRequest( campaign_name="Summer Sale 2024", target_audience="millenials", campaign_type="social_media", base_prompts=[ "Promotional banner for summer clothing collection", "Marketing visual for seasonal discount campaign", "Advertisement for limited-time offer" ) # Generate sample images images, insights = marketing_system.process_campaign_request( {}, sample_request.base_prompts, 30 ) print(f"Generated {len(images)} campaign banners") print(f"Performance Insights: {insights}") # Save sample images os.makedirs("./generated_campaigns", exist_ok=True) for i, image in enumerate(images): image_path = f"./generated_campaigns/sample_banner_{i+1}.png") image.save(image_path) print(f"Saved sample banner: {image_path}") print("\nSystem ready for real-time marketing campaigns!") print("API endpoints available at http://localhost:8000") # Start the FastAPI server uvicorn.run( "marketing_image_generator:app", host="0.0.0.0", port=8000, reload=True ) if __name__ == "__main__": main() ```