File size: 16,406 Bytes
b976206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
```python
#!/usr/bin/env python3
"""
AI Forge E-commerce Image Generator
Stable Diffusion + Predictive ML for personalized product mockups
Optimized for 220% YoY demand growth in visual content creation
"""
import os
import torch
import pandas as pd
import numpy as np
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
from PIL import Image
import io
import base64
import warnings
warnings.filterwarnings('ignore')
# Configuration
class Config:
"""Configuration parameters for the image generation system"""
STABLE_DIFFUSION_MODEL = "runwayml/stable-diffusion-v1-5"
IMAGE_SIZE = (512, 512)
MAX_LENGTH = 77
BATCH_SIZE = 4
EPOCHS = 50
LEARNING_RATE = 1e-4
PREDICTION_MODEL_PATH = "./models/style_predictor.h5"
TRAINING_DATA_PATH = "./data/ecommerce_sales.csv"
OUTPUT_DIR = "./generated_images"
# Style categories for prediction
STYLE_CATEGORIES = ['minimalist', 'vintage', 'modern', 'luxury', 'tech', 'sporty']
COLOR_CATEGORIES = ['blue', 'red', 'green', 'black', 'white', 'pastel', 'neon']
PRODUCT_TYPES = ['clothing', 'electronics', 'home_decor', 'beauty', 'accessories']
class StylePredictor:
"""TensorFlow model for predicting trending styles and colors"""
def __init__(self, input_dim):
self.input_dim = input_dim
self.model = None
def build_model(self):
"""Build the style prediction model"""
model = keras.Sequential([
layers.Dense(256, activation='relu', input_shape=(input_dim,)),
layers.Dropout(0.3),
layers.Dense(128, activation='relu'),
layers.Dropout(0.2),
layers.Dense(64, activation='relu'),
layers.Dense(len(Config.STYLE_CATEGORIES) + len(Config.COLOR_CATEGORIES)),
layers.Activation('sigmoid')
])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=Config.LEARNING_RATE),
loss='binary_crossentropy',
metrics=['accuracy']
)
self.model = model
return model
def train(self, X_train, y_train, X_val=None, y_val=None):
"""Train the style prediction model"""
callbacks = [
keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True),
keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5),
keras.callbacks.ModelCheckpoint(
Config.PREDICTION_MODEL_PATH,
save_best_only=True,
monitor='val_loss' if X_val is not None else 'loss'
)
]
history = self.model.fit(
X_train, y_train,
batch_size=Config.BATCH_SIZE,
epochs=Config.EPOCHS,
validation_data=(X_val, y_val) if X_val is not None else None,
callbacks=callbacks,
verbose=1
)
return history
def predict_trends(self, customer_data):
"""Predict trending styles and colors for customer segment"""
predictions = self.model.predict(customer_data)
# Split predictions into styles and colors
style_predictions = predictions[:, :len(Config.STYLE_CATEGORIES)]
color_predictions = predictions[:, len(Config.STYLE_CATEGORIES):]
return style_predictions, color_predictions
class EcommerceDataProcessor:
"""Process e-commerce sales data for trend prediction"""
def __init__(self):
self.feature_columns = []
def load_and_preprocess_data(self, file_path):
"""Load and preprocess e-commerce sales data"""
try:
df = pd.read_csv(file_path)
print(f"Loaded dataset with {len(df)} rows")
return df
except Exception as e:
print(f"Error loading data: {e}")
return None
def extract_features(self, df):
"""Extract features from e-commerce data"""
features = []
# Demographic features
demographic_features = ['age', 'income_level', 'location_urban', 'gender_encoded']
# Time-based features
df['purchase_month'] = pd.to_datetime(df['purchase_date']).dt.month
features.append(pd.get_dummies(df['purchase_month'], prefix='month'))
# Product features
product_features = ['price', 'category_encoded', 'brand_popularity']
# Combine all features
for feature in demographic_features + ['purchase_month', 'price', 'category_encoded', 'brand_popularity']:
if feature in df.columns:
features.append(df[[feature]]))
# One-hot encode categorical variables
categorical_cols = ['region', 'device_type', 'marketing_channel']
for col in categorical_cols:
if col in df.columns:
dummies = pd.get_dummies(df[col], prefix=col)
features.append(dummies)
X = pd.concat(features, axis=1)
self.feature_columns = X.columns.tolist()
return X
def prepare_training_labels(self, df):
"""Prepare training labels for style and color trends"""
# Create binary labels for styles and colors based on sales performance
labels = []
for _, row in df.iterrows():
# Style preferences (based on product attributes)
style_vector = [0] * len(Config.STYLE_CATEGORIES)
color_vector = [0] * len(Config.COLOR_CATEGORIES)
# For each product, determine dominant style and color
if row['sales_rank'] <= 100: # Top selling products
# Analyze product description for style keywords
description = str(row.get('product_description', '')).lower()
for i, style in enumerate(Config.STYLE_CATEGORIES):
if style in description:
style_vector[i] = 1
# Color analysis from product data
color_data = str(row.get('color_data', '')).lower()
for j, color in enumerate(Config.COLOR_CATEGORIES):
if color in description or color in str(row.get('primary_color', '')).lower():
color_vector[j] = 1
labels.append(style_vector + color_vector)
return np.array(labels)
class StableDiffusionGenerator:
"""Stable Diffusion image generator for e-commerce mockups"""
def __init__(self):
self.pipeline = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
def load_model(self):
"""Load Stable Diffusion model"""
try:
self.pipeline = StableDiffusionPipeline.from_pretrained(
Config.STABLE_DIFFUSION_MODEL,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipeline.scheduler.config
)
self.pipeline = self.pipeline.to(self.device)
print("Stable Diffusion model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
def generate_product_mockup(self, prompt, style_weights=None, color_weights=None):
"""Generate product mockup with style and color conditioning"""
# Enhance prompt based on predicted trends
enhanced_prompt = self._enhance_prompt(prompt, style_weights, color_weights)
# Generate image
with torch.autocast(self.device.type):
image = self.pipeline(
prompt,
height=Config.IMAGE_SIZE[0],
width=Config.IMAGE_SIZE[1],
num_inference_steps=25,
guidance_scale=7.5
).images[0]
return image
def _enhance_prompt(self, base_prompt, style_weights, color_weights):
"""Enhance prompt with style and color conditioning"""
if style_weights is not None:
# Get top predicted styles
top_style_indices = np.argsort(style_weights)[-2:] # Top 2 styles
top_colors_indices = np.argsort(color_weights)[-2:]
# Add style descriptors
style_descriptors = []
for idx in top_style_indices:
style_descriptors.append(Config.STYLE_CATEGORIES[idx])
# Add color descriptors
color_descriptors = []
for idx in top_colors_indices:
color_descriptors.append(Config.COLOR_CATEGORIES[idx])
enhanced_prompt = f"{base_prompt}, {', '.join(style_descriptors)} style, colors: {', '.join(color_descriptors)}"
return enhanced_prompt
def generate_batch_mockups(self, prompts, style_predictions, color_predictions):
"""Generate multiple product mockups in batch"""
images = []
for i, prompt in enumerate(prompts):
style_weights = style_predictions[i] if i < len(style_predictions) else None
color_weights = color_predictions[i] if i < len(color_predictions) else None
image = self.generate_product_mockup(prompt, style_weights, color_weights)
images.append(image)
return images
class EcommerceImageAPI:
"""FastAPI integration for the e-commerce image generation system"""
def __init__(self):
self.data_processor = EcommerceDataProcessor()
self.style_predictor = None
self.image_generator = StableDiffusionGenerator()
def initialize_system(self):
"""Initialize the complete system"""
print("Initializing E-commerce Image Generation System...")
# Load data
df = self.data_processor.load_and_preprocess_data(Config.TRAINING_DATA_PATH)
if df is not None:
# Prepare features and labels
X = self.data_processor.extract_features(df)
y = self.data_processor.prepare_training_labels(df)
# Initialize and train style predictor
self.style_predictor = StylePredictor(X.shape[1])
self.style_predictor.build_model()
# Split data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Train model
print("Training style prediction model...")
history = self.style_predictor.train(X_train, y_train, X_test, y_test)
# Evaluate model
test_loss, test_accuracy = self.style_predictor.model.evaluate(X_test, y_test)
print(f"Model trained - Test Accuracy: {test_accuracy:.4f}")
# Load image generator
self.image_generator.load_model()
print("System initialized successfully")
def predict_and_generate(self, customer_segment_data, base_prompts):
"""Complete workflow: predict trends and generate images"""
# Predict styles and colors
style_predictions, color_predictions = self.style_predictor.predict_trends(customer_segment_data)
# Generate images
images = self.image_generator.generate_batch_mockups(
base_prompts, style_predictions, color_predictions
)
return images, style_predictions, color_predictions
# FastAPI Integration
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
import uvicorn
app = FastAPI(title="AI Forge E-commerce Image Generator")
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
class GenerationRequest(BaseModel):
customer_data: List[dict]
base_prompts: List[str]
num_images: int = 1
class GenerationResponse(BaseModel):
success: bool
message: str
generated_images: Optional[List[str]] = None
predicted_styles: Optional[List[str]] = None
predicted_colors: Optional[List[str]] = None
# Initialize system
ecommerce_system = EcommerceImageAPI()
@app.on_event("startup")
async def startup_event():
"""Initialize system on startup"""
ecommerce_system.initialize_system()
@app.get("/")
async def root():
return {"message": "AI Forge E-commerce Image Generator API"}
@app.post("/api/generate-mockups", response_model=GenerationResponse)
async def generate_mockups(request: GenerationRequest):
"""Generate product mockups based on predicted trends"""
try:
# Convert customer data to DataFrame
customer_df = pd.DataFrame(request.customer_data)
# Process customer data
X_customer = ecommerce_system.data_processor.extract_features(customer_df)
# Generate images
images, style_preds, color_preds = ecommerce_system.predict_and_generate(
X_customer,
request.base_prompts
)
# Convert images to base64 for API response
base64_images = []
for image in images:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
base64_images.append(img_str)
# Get top predicted styles and colors
top_styles = []
top_colors = []
for style_pred in style_preds:
top_indices = np.argsort(style_pred)[-2:]
top_styles.append([Config.STYLE_CATEGORIES[i] for i in top_indices])
top_colors = [[Config.COLOR_CATEGORIES[i] for i in np.argsort(color_pred)[-2:]] for color_pred in color_preds]
return GenerationResponse(
success=True,
message=f"Successfully generated {len(images)} mockups")
generated_images=base64_images,
predicted_styles=top_styles,
predicted_colors=top_colors
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}")
@app.get("/api/health")
async def health_check():
return {"status": "healthy", "service": "ecommerce_image_generator"}
def main():
"""Main execution function"""
print("="*60)
print("AI FORGE E-COMMERCE IMAGE GENERATOR")
print("Optimized for 220% YoY demand growth")
print("="*60)
# Initialize and test the system
system = EcommerceImageAPI()
system.initialize_system()
# Sample generation
print("\nGenerating sample mockups...")
sample_customer_data = [
{
'age': 35,
'income_level': 4,
'location_urban': 1,
'gender_encoded': 0,
'region': 'north_america',
'device_type': 'mobile',
'marketing_channel': 'social_media',
'price': 89.99,
'category_encoded': 2,
'brand_popularity': 8
}
]
sample_prompts = [
"professional product mockup for modern e-commerce website"
]
images, styles, colors = system.predict_and_generate(
pd.DataFrame(sample_customer_data),
sample_prompts
)
print(f"Generated {len(images)} images successfully")
print(f"Predicted top styles: {styles}")
print(f"Predicted top colors: {colors}")
# Save sample images
os.makedirs(Config.OUTPUT_DIR, exist_ok=True)
for i, image in enumerate(images):
image_path = os.path.join(Config.OUTPUT_DIR, f"sample_mockup_{i+1}.png")
image.save(image_path)
print(f"Saved sample image: {image_path}")
print("\nSystem ready for production deployment!")
print("API endpoints available at http://localhost:8000")
if __name__ == "__main__":
# Run the main function for testing
main()
# Start the FastAPI server
uvicorn.run(
"ecommerce_image_generator:app",
host="0.0.0.0",
port=8000,
reload=True
)
``` |