Spaces:
Sleeping
Sleeping
Update rag_langgraph.py
Browse files- rag_langgraph.py +7 -4
rag_langgraph.py
CHANGED
|
@@ -6,6 +6,7 @@ from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedD
|
|
| 6 |
|
| 7 |
from langchain.agents import AgentExecutor, create_openai_tools_agent
|
| 8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
|
|
|
| 9 |
from langchain_core.messages import BaseMessage, HumanMessage
|
| 10 |
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
| 11 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
@@ -42,6 +43,7 @@ def today_tool(text: str) -> str:
|
|
| 42 |
return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
|
| 43 |
|
| 44 |
def create_graph(model, topic):
|
|
|
|
| 45 |
tavily_tool = TavilySearchResults(max_results=10)
|
| 46 |
|
| 47 |
members = ["Researcher"]
|
|
@@ -94,10 +96,11 @@ def create_graph(model, topic):
|
|
| 94 |
| JsonOutputFunctionsParser()
|
| 95 |
)
|
| 96 |
|
| 97 |
-
researcher_agent = create_agent(llm, [tavily_tool, today_tool], system_prompt=
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher")
|
| 102 |
|
| 103 |
workflow = StateGraph(AgentState)
|
|
|
|
| 6 |
|
| 7 |
from langchain.agents import AgentExecutor, create_openai_tools_agent
|
| 8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 9 |
+
from langchain_community.utilities import ArxivAPIWrapper
|
| 10 |
from langchain_core.messages import BaseMessage, HumanMessage
|
| 11 |
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
| 12 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
|
| 43 |
return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
|
| 44 |
|
| 45 |
def create_graph(model, topic):
|
| 46 |
+
arxiv_tool = ArxivAPIWrapper()
|
| 47 |
tavily_tool = TavilySearchResults(max_results=10)
|
| 48 |
|
| 49 |
members = ["Researcher"]
|
|
|
|
| 96 |
| JsonOutputFunctionsParser()
|
| 97 |
)
|
| 98 |
|
| 99 |
+
researcher_agent = create_agent(llm, [arxiv_tool, tavily_tool, today_tool], system_prompt=
|
| 100 |
+
"1. Research content on topic: " + topic + ", prioritizing research papers. "
|
| 101 |
+
"2. Based on your research, write a 2000-word article on the topic. "
|
| 102 |
+
"3. At the beginning of the article, add current date and author: Multi-AI-Agent System. "
|
| 103 |
+
"4. At the end of the article, add a references section with research papers.")
|
| 104 |
researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher")
|
| 105 |
|
| 106 |
workflow = StateGraph(AgentState)
|