Spaces:
Runtime error
Runtime error
Upload tool
Browse files- app.py +4 -0
- blip_tool.py +79 -0
- requirements.txt +5 -0
- tool_config.json +5 -0
app.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import launch_gradio_demo
|
| 2 |
+
from blip_tool import InstructBLIPImageQuestionAnsweringTool
|
| 3 |
+
|
| 4 |
+
launch_gradio_demo(InstructBLIPImageQuestionAnsweringTool)
|
blip_tool.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
os.environ['TRANSFORMERS_CACHE'] = "/home/ec2-user/SageMaker/blip/cache"
|
| 5 |
+
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
| 10 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
| 11 |
+
from transformers.tools import PipelineTool
|
| 12 |
+
from transformers.tools.base import get_default_device
|
| 13 |
+
from transformers.utils import requires_backends
|
| 14 |
+
|
| 15 |
+
class InstructBLIPImageQuestionAnsweringTool(PipelineTool):
|
| 16 |
+
#default_checkpoint = "Salesforce/blip2-opt-2.7b"
|
| 17 |
+
#default_checkpoint = "Salesforce/instructblip-flan-t5-xl"
|
| 18 |
+
default_checkpoint = "Salesforce/instructblip-vicuna-7b"
|
| 19 |
+
#default_checkpoint = "Salesforce/instructblip-vicuna-13b"
|
| 20 |
+
|
| 21 |
+
description = (
|
| 22 |
+
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
|
| 23 |
+
"image containing the information, as well as a `question` which should be the question in English. It "
|
| 24 |
+
"returns a text that is the answer to the question."
|
| 25 |
+
)
|
| 26 |
+
name = "image_qa"
|
| 27 |
+
pre_processor_class = AutoProcessor
|
| 28 |
+
model_class = AutoModelForVision2Seq
|
| 29 |
+
inputs = ["image", "text"]
|
| 30 |
+
outputs = ["text"]
|
| 31 |
+
|
| 32 |
+
def __init__(self, *args, **kwargs):
|
| 33 |
+
requires_backends(self, ["vision"])
|
| 34 |
+
super().__init__(*args, **kwargs)
|
| 35 |
+
|
| 36 |
+
def setup(self):
|
| 37 |
+
"""
|
| 38 |
+
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
|
| 39 |
+
"""
|
| 40 |
+
if isinstance(self.pre_processor, str):
|
| 41 |
+
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
|
| 42 |
+
|
| 43 |
+
if isinstance(self.model, str):
|
| 44 |
+
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs, load_in_4bit=True, torch_dtype=torch.float16)
|
| 45 |
+
|
| 46 |
+
if self.post_processor is None:
|
| 47 |
+
self.post_processor = self.pre_processor
|
| 48 |
+
elif isinstance(self.post_processor, str):
|
| 49 |
+
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
|
| 50 |
+
|
| 51 |
+
if self.device is None:
|
| 52 |
+
if self.device_map is not None:
|
| 53 |
+
self.device = list(self.model.hf_device_map.values())[0]
|
| 54 |
+
else:
|
| 55 |
+
self.device = get_default_device()
|
| 56 |
+
|
| 57 |
+
# if self.device_map is None:
|
| 58 |
+
# self.model.to(self.device)
|
| 59 |
+
self.is_initialized = True
|
| 60 |
+
|
| 61 |
+
def encode(self, image, question: str):
|
| 62 |
+
return self.pre_processor(images=image, text=question, return_tensors="pt").to(device="cuda", dtype=torch.float16)
|
| 63 |
+
|
| 64 |
+
def forward(self, inputs):
|
| 65 |
+
outputs = self.model.generate(
|
| 66 |
+
**inputs,
|
| 67 |
+
#max_new_tokens=50,
|
| 68 |
+
num_beams=5,
|
| 69 |
+
max_new_tokens=256,
|
| 70 |
+
min_length=1,
|
| 71 |
+
top_p=0.9,
|
| 72 |
+
repetition_penalty=1.5,
|
| 73 |
+
length_penalty=1.0,
|
| 74 |
+
temperature=1,
|
| 75 |
+
)
|
| 76 |
+
return outputs
|
| 77 |
+
|
| 78 |
+
def decode(self, outputs):
|
| 79 |
+
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
os
|
| 5 |
+
PIL
|
tool_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"description": "This is a tool that answers a question about an image. It takes an input named `image` which should be the image containing the information, as well as a `question` which should be the question in English. It returns a text that is the answer to the question.",
|
| 3 |
+
"name": "image_qa",
|
| 4 |
+
"tool_class": "blip_tool.InstructBLIPImageQuestionAnsweringTool"
|
| 5 |
+
}
|