Spaces:
Running
Running
File size: 8,007 Bytes
94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed 61cfbd5 94c36ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import psycopg2
from psycopg2.extras import execute_values, Json
import pandas as pd
from sentence_transformers import SentenceTransformer
import os
import datetime
import logging
from collections import deque
from fastapi import FastAPI, BackgroundTasks, HTTPException
from contextlib import asynccontextmanager
from fastapi.responses import HTMLResponse
import threading
import json
# --- Configuration ---
SUPABASE_CONNECTION_STRING = os.getenv("SUPABASE_CONNECTION_STRING")
# --- Toggles & Tuning ---
PROCESSING_CHUNK_SIZE = 10
EMBEDDING_BATCH_SIZE = 32
DRY_RUN = False
# --- Global State ---
model = None
execution_logs = deque(maxlen=50)
processing_lock = threading.Lock()
# --- Lifespan Manager ---
@asynccontextmanager
async def lifespan(app: FastAPI):
global model
print("β³ Loading Model...")
# Using the Alibaba GTE ModernBERT as requested
model = SentenceTransformer('Alibaba-NLP/gte-modernbert-base', trust_remote_code=True)
print("β
Model Loaded.")
yield
print("π Shutting down...")
app = FastAPI(lifespan=lifespan)
# --- Helper Functions ---
def fetch_and_lock_chunk(conn, chunk_size):
"""
Fetches the next batch of JOBS from the new denormalized schema
and LOCKS them using FOR UPDATE SKIP LOCKED.
"""
query = """
WITH locked_jobs AS (
SELECT
id,
title,
company_name,
location,
work_model,
employment_type,
roles_and_responsibilities,
qualification,
min_experience
FROM jobs
WHERE
-- Condition 1: Embedding is missing (New Job)
embeddings IS NULL
OR
-- Condition 2: Job created after the last embedding (Retry/Update Logic)
-- Note: Since there is no 'updated_at' column, we rely on created_at vs embeddings_created_at
(embeddings_created_at IS NOT NULL AND created_at > embeddings_created_at)
LIMIT %s
FOR UPDATE SKIP LOCKED
)
SELECT * FROM locked_jobs;
"""
# pandas read_sql usually handles JSONB columns as standard Python objects (lists/dicts)
return pd.read_sql_query(query, conn, params=(chunk_size,))
def clean_and_format_text(row):
"""
Joins denormalized columns into a single semantic string for embedding.
"""
# Configuration: Maps DB Column -> Semantic Tag
# (Column Name in DF, Label for Text)
field_config = [
('title', 'Job Title'),
('company_name', 'Company'),
('location', 'Location'),
('work_model', 'Work Model'),
('min_experience', 'Minimum Experience (Years)'),
('roles_and_responsibilities', 'Responsibilities'),
('qualification', 'Qualifications')
]
text_parts = []
for col_name, tag in field_config:
if col_name in row and row[col_name] is not None:
data = row[col_name]
# Case A: JSONB List (Roles, Qualifications)
if isinstance(data, list):
# Filter out empty strings or None values
clean_items = [str(item).strip() for item in data if item and str(item).strip()]
if clean_items:
text_parts.append(f"{tag}: " + ", ".join(clean_items))
# Case B: Standard String/Int (Title, Company, Experience)
elif str(data).strip():
clean_text = str(data).strip().replace('\r', '')
text_parts.append(f"{tag}: {clean_text}")
# Combine all parts with newlines
return "\n".join(text_parts)
def update_db_batch(conn, updates):
if DRY_RUN: return
# Update the 'embeddings' column and the 'embeddings_created_at' timestamp
query = """
UPDATE jobs AS j
SET embeddings = data.vector::vector,
embeddings_created_at = NOW()
FROM (VALUES %s) AS data (id, vector)
WHERE j.id = data.id::uuid
"""
cursor = conn.cursor()
try:
execute_values(cursor, query, updates)
conn.commit()
except Exception as e:
conn.rollback()
raise e
finally:
cursor.close()
def run_worker_logic():
"""
The core logic that runs one single batch processing for JOBS.
"""
log_buffer = []
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_buffer.append(f"<b>BATCH RUN: {timestamp}</b>")
conn = None
try:
conn = psycopg2.connect(SUPABASE_CONNECTION_STRING)
# 1. Fetch & Lock
df = fetch_and_lock_chunk(conn, PROCESSING_CHUNK_SIZE)
if df.empty:
conn.rollback()
log_buffer.append("π€ No pending jobs found.")
execution_logs.appendleft("<br>".join(log_buffer))
return "No data"
log_buffer.append(f"π Locked & Processing {len(df)} jobs...")
# 2. Clean Text
df['full_text'] = df.apply(clean_and_format_text, axis=1)
# 3. Log Inputs (for debugging/visibility)
for index, row in df.iterrows():
log_buffer.append(f"<div style='border:1px solid #ccc; margin:5px; padding:5px; background:#f9f9f9'>")
log_buffer.append(f"<strong>ID: {row['id']} - {row.get('title', 'Unknown')}</strong>")
log_buffer.append(f"<pre style='white-space: pre-wrap; font-size: 0.8em;'>{row['full_text']}</pre>")
log_buffer.append("</div>")
# 4. Generate Embeddings
# Note: Ensure the model dimensions match your DB vector size (ModernBERT is typically 768)
embeddings = model.encode(
df['full_text'].tolist(),
batch_size=EMBEDDING_BATCH_SIZE,
show_progress_bar=False,
convert_to_numpy=True,
normalize_embeddings=True
)
# 5. Update DB
updates = list(zip(df['id'].tolist(), embeddings.tolist()))
if not DRY_RUN:
update_db_batch(conn, updates)
log_buffer.append(f"β
Successfully updated {len(df)} jobs.")
else:
conn.rollback()
log_buffer.append("β οΈ Dry Run: No DB updates made.")
except Exception as e:
if conn: conn.rollback()
log_buffer.append(f"β ERROR: {str(e)}")
print(f"Error: {e}")
finally:
if conn: conn.close()
execution_logs.appendleft("<br>".join(log_buffer))
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root():
html_content = """
<html>
<head>
<title>Job Embedding Worker Logs</title>
<style>
body { font-family: monospace; padding: 20px; }
h1 { color: #333; }
.log-entry { margin-bottom: 20px; border-bottom: 2px solid #333; padding-bottom: 20px; }
</style>
</head>
<body>
<h1>π Job Embedding Worker Logs</h1>
<p><i>Most recent batches shown first.</i></p>
<hr>
"""
if not execution_logs:
html_content += "<p>No logs yet. Hit the <code>/trigger-batch</code> endpoint to start processing.</p>"
for entry in execution_logs:
html_content += f"<div class='log-entry'>{entry}</div>"
html_content += "</body></html>"
return html_content
@app.get("/trigger-batch")
async def trigger_processing(background_tasks: BackgroundTasks):
if processing_lock.locked():
return {"status": "busy", "message": "Worker is currently processing a previous batch."}
background_tasks.add_task(wrapped_worker)
return {"status": "started", "message": "Batch processing started in background."}
def wrapped_worker():
if processing_lock.acquire(blocking=False):
try:
run_worker_logic()
finally:
processing_lock.release() |