Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| from transformers import ( TokenClassificationPipeline, AutoModelForTokenClassification, AutoTokenizer) | |
| from transformers.pipelines import AggregationStrategy | |
| import numpy as np | |
| # ================================= summarize code ================================= | |
| def summerize(text): | |
| summarizer = pipeline("summarization", model="Falconsai/text_summarization") | |
| text_len = len(text.split(' ')) | |
| max_length = int((text_len * 80)/100) | |
| min_length = int((text_len * 30)/100) | |
| return{"output": summarizer(text, max_length=max_length, min_length=min_length, do_sample=True)} | |
| # =================================s keywords code ================================= | |
| # Define keyphrase extraction pipeline | |
| # class KeyphraseExtractionPipeline(TokenClassificationPipeline): | |
| # def __init__(self, model, *args, **kwargs): | |
| # super().__init__( | |
| # model=AutoModelForTokenClassification.from_pretrained(model), | |
| # tokenizer=AutoTokenizer.from_pretrained(model), | |
| # *args, | |
| # **kwargs | |
| # ) | |
| # def postprocess(self, all_outputs): | |
| # results = super().postprocess( | |
| # all_outputs=all_outputs, | |
| # aggregatsion_strategy=AggregationStrategy.FIRST, | |
| # ) | |
| # return np.unique([result.get("word").strip() for result in results]) | |
| # # Load pipeline | |
| # model_name = "ml6team/keyphrase-extraction-distilbert-inspec" | |
| # extractor = KeyphraseExtractionPipeline(model=model_name) | |
| # keyphrases = extractor(text) | |
| # print(keyphrases) | |