Spaces:
Runtime error
Runtime error
| import gc | |
| import PIL.Image | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from diffusers import ControlNetModel | |
| from loguru import logger | |
| from lama_cleaner.model.base import DiffusionInpaintModel | |
| from lama_cleaner.model.utils import torch_gc, get_scheduler | |
| from lama_cleaner.schema import Config | |
| class CPUTextEncoderWrapper: | |
| def __init__(self, text_encoder, torch_dtype): | |
| self.config = text_encoder.config | |
| self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) | |
| self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) | |
| self.torch_dtype = torch_dtype | |
| del text_encoder | |
| torch_gc() | |
| def __call__(self, x, **kwargs): | |
| input_device = x.device | |
| return [ | |
| self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] | |
| .to(input_device) | |
| .to(self.torch_dtype) | |
| ] | |
| def dtype(self): | |
| return self.torch_dtype | |
| NAMES_MAP = { | |
| "sd1.5": "runwayml/stable-diffusion-inpainting", | |
| "anything4": "Sanster/anything-4.0-inpainting", | |
| "realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting", | |
| } | |
| NATIVE_NAMES_MAP = { | |
| "sd1.5": "runwayml/stable-diffusion-v1-5", | |
| "anything4": "andite/anything-v4.0", | |
| "realisticVision1.4": "SG161222/Realistic_Vision_V1.4", | |
| } | |
| def make_inpaint_condition(image, image_mask): | |
| """ | |
| image: [H, W, C] RGB | |
| mask: [H, W, 1] 255 means area to repaint | |
| """ | |
| image = image.astype(np.float32) / 255.0 | |
| image[image_mask[:, :, -1] > 128] = -1.0 # set as masked pixel | |
| image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return image | |
| def load_from_local_model( | |
| local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint | |
| ): | |
| from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( | |
| download_from_original_stable_diffusion_ckpt, | |
| ) | |
| logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline") | |
| try: | |
| pipe = download_from_original_stable_diffusion_ckpt( | |
| local_model_path, | |
| num_in_channels=4 if is_native_control_inpaint else 9, | |
| from_safetensors=local_model_path.endswith("safetensors"), | |
| device="cpu", | |
| load_safety_checker=False, | |
| ) | |
| except Exception as e: | |
| err_msg = str(e) | |
| logger.exception(e) | |
| if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg: | |
| logger.error( | |
| "control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model" | |
| ) | |
| if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg: | |
| logger.error( | |
| f"{controlnet.config['_name_or_path']} method requires inpainting SD model, " | |
| f"you can convert any SD model to inpainting model in AUTO1111: \n" | |
| f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/" | |
| ) | |
| exit(-1) | |
| inpaint_pipe = pipe_class( | |
| vae=pipe.vae, | |
| text_encoder=pipe.text_encoder, | |
| tokenizer=pipe.tokenizer, | |
| unet=pipe.unet, | |
| controlnet=controlnet, | |
| scheduler=pipe.scheduler, | |
| safety_checker=None, | |
| feature_extractor=None, | |
| requires_safety_checker=False, | |
| ) | |
| del pipe | |
| gc.collect() | |
| return inpaint_pipe.to(torch_dtype=torch_dtype) | |
| class ControlNet(DiffusionInpaintModel): | |
| name = "controlnet" | |
| pad_mod = 8 | |
| min_size = 512 | |
| def init_model(self, device: torch.device, **kwargs): | |
| fp16 = not kwargs.get("no_half", False) | |
| model_kwargs = { | |
| "local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) | |
| } | |
| if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): | |
| logger.info("Disable Stable Diffusion Model NSFW checker") | |
| model_kwargs.update( | |
| dict( | |
| safety_checker=None, | |
| feature_extractor=None, | |
| requires_safety_checker=False, | |
| ) | |
| ) | |
| use_gpu = device == torch.device("cuda") and torch.cuda.is_available() | |
| torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 | |
| sd_controlnet_method = kwargs["sd_controlnet_method"] | |
| self.sd_controlnet_method = sd_controlnet_method | |
| if sd_controlnet_method == "control_v11p_sd15_inpaint": | |
| from diffusers import StableDiffusionControlNetPipeline as PipeClass | |
| self.is_native_control_inpaint = True | |
| else: | |
| from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass | |
| self.is_native_control_inpaint = False | |
| if self.is_native_control_inpaint: | |
| model_id = NATIVE_NAMES_MAP[kwargs["name"]] | |
| else: | |
| model_id = NAMES_MAP[kwargs["name"]] | |
| controlnet = ControlNetModel.from_pretrained( | |
| f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype | |
| ) | |
| self.is_local_sd_model = False | |
| if kwargs.get("sd_local_model_path", None): | |
| self.is_local_sd_model = True | |
| self.model = load_from_local_model( | |
| kwargs["sd_local_model_path"], | |
| torch_dtype=torch_dtype, | |
| controlnet=controlnet, | |
| pipe_class=PipeClass, | |
| is_native_control_inpaint=self.is_native_control_inpaint, | |
| ) | |
| else: | |
| self.model = PipeClass.from_pretrained( | |
| model_id, | |
| controlnet=controlnet, | |
| revision="fp16" if use_gpu and fp16 else "main", | |
| torch_dtype=torch_dtype, | |
| **model_kwargs, | |
| ) | |
| # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing | |
| self.model.enable_attention_slicing() | |
| # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention | |
| if kwargs.get("enable_xformers", False): | |
| self.model.enable_xformers_memory_efficient_attention() | |
| if kwargs.get("cpu_offload", False) and use_gpu: | |
| logger.info("Enable sequential cpu offload") | |
| self.model.enable_sequential_cpu_offload(gpu_id=0) | |
| else: | |
| self.model = self.model.to(device) | |
| if kwargs["sd_cpu_textencoder"]: | |
| logger.info("Run Stable Diffusion TextEncoder on CPU") | |
| self.model.text_encoder = CPUTextEncoderWrapper( | |
| self.model.text_encoder, torch_dtype | |
| ) | |
| self.callback = kwargs.pop("callback", None) | |
| def forward(self, image, mask, config: Config): | |
| """Input image and output image have same size | |
| image: [H, W, C] RGB | |
| mask: [H, W, 1] 255 means area to repaint | |
| return: BGR IMAGE | |
| """ | |
| scheduler_config = self.model.scheduler.config | |
| scheduler = get_scheduler(config.sd_sampler, scheduler_config) | |
| self.model.scheduler = scheduler | |
| if config.sd_mask_blur != 0: | |
| k = 2 * config.sd_mask_blur + 1 | |
| mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] | |
| img_h, img_w = image.shape[:2] | |
| if self.is_native_control_inpaint: | |
| control_image = make_inpaint_condition(image, mask) | |
| output = self.model( | |
| prompt=config.prompt, | |
| image=control_image, | |
| height=img_h, | |
| width=img_w, | |
| num_inference_steps=config.sd_steps, | |
| guidance_scale=config.sd_guidance_scale, | |
| controlnet_conditioning_scale=config.controlnet_conditioning_scale, | |
| negative_prompt=config.negative_prompt, | |
| generator=torch.manual_seed(config.sd_seed), | |
| output_type="np.array", | |
| callback=self.callback, | |
| ).images[0] | |
| else: | |
| if "canny" in self.sd_controlnet_method: | |
| canny_image = cv2.Canny(image, 100, 200) | |
| canny_image = canny_image[:, :, None] | |
| canny_image = np.concatenate( | |
| [canny_image, canny_image, canny_image], axis=2 | |
| ) | |
| canny_image = PIL.Image.fromarray(canny_image) | |
| control_image = canny_image | |
| elif "openpose" in self.sd_controlnet_method: | |
| from controlnet_aux import OpenposeDetector | |
| processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
| control_image = processor(image, hand_and_face=True) | |
| elif "depth" in self.sd_controlnet_method: | |
| from transformers import pipeline | |
| depth_estimator = pipeline("depth-estimation") | |
| depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"] | |
| depth_image = np.array(depth_image) | |
| depth_image = depth_image[:, :, None] | |
| depth_image = np.concatenate( | |
| [depth_image, depth_image, depth_image], axis=2 | |
| ) | |
| control_image = PIL.Image.fromarray(depth_image) | |
| else: | |
| raise NotImplementedError( | |
| f"{self.sd_controlnet_method} not implemented" | |
| ) | |
| mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") | |
| image = PIL.Image.fromarray(image) | |
| output = self.model( | |
| image=image, | |
| control_image=control_image, | |
| prompt=config.prompt, | |
| negative_prompt=config.negative_prompt, | |
| mask_image=mask_image, | |
| num_inference_steps=config.sd_steps, | |
| guidance_scale=config.sd_guidance_scale, | |
| output_type="np.array", | |
| callback=self.callback, | |
| height=img_h, | |
| width=img_w, | |
| generator=torch.manual_seed(config.sd_seed), | |
| controlnet_conditioning_scale=config.controlnet_conditioning_scale, | |
| ).images[0] | |
| output = (output * 255).round().astype("uint8") | |
| output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
| return output | |
| def forward_post_process(self, result, image, mask, config): | |
| if config.sd_match_histograms: | |
| result = self._match_histograms(result, image[:, :, ::-1], mask) | |
| if config.sd_mask_blur != 0: | |
| k = 2 * config.sd_mask_blur + 1 | |
| mask = cv2.GaussianBlur(mask, (k, k), 0) | |
| return result, image, mask | |
| def is_downloaded() -> bool: | |
| # model will be downloaded when app start, and can't switch in frontend settings | |
| return True | |