Spaces:
Runtime error
Runtime error
| import abc | |
| from typing import Optional | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| from loguru import logger | |
| from lama_cleaner.helper import ( | |
| boxes_from_mask, | |
| resize_max_size, | |
| pad_img_to_modulo, | |
| switch_mps_device, | |
| ) | |
| from lama_cleaner.schema import Config, HDStrategy | |
| class InpaintModel: | |
| name = "base" | |
| min_size: Optional[int] = None | |
| pad_mod = 8 | |
| pad_to_square = False | |
| def __init__(self, device, **kwargs): | |
| """ | |
| Args: | |
| device: | |
| """ | |
| device = switch_mps_device(self.name, device) | |
| self.device = device | |
| self.init_model(device, **kwargs) | |
| def init_model(self, device, **kwargs): | |
| ... | |
| def is_downloaded() -> bool: | |
| ... | |
| def forward(self, image, mask, config: Config): | |
| """Input images and output images have same size | |
| images: [H, W, C] RGB | |
| masks: [H, W, 1] 255 为 masks 区域 | |
| return: BGR IMAGE | |
| """ | |
| ... | |
| def _pad_forward(self, image, mask, config: Config): | |
| origin_height, origin_width = image.shape[:2] | |
| pad_image = pad_img_to_modulo( | |
| image, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size | |
| ) | |
| pad_mask = pad_img_to_modulo( | |
| mask, mod=self.pad_mod, square=self.pad_to_square, min_size=self.min_size | |
| ) | |
| logger.info(f"final forward pad size: {pad_image.shape}") | |
| result = self.forward(pad_image, pad_mask, config) | |
| result = result[0:origin_height, 0:origin_width, :] | |
| result, image, mask = self.forward_post_process(result, image, mask, config) | |
| mask = mask[:, :, np.newaxis] | |
| result = result * (mask / 255) + image[:, :, ::-1] * (1 - (mask / 255)) | |
| return result | |
| def forward_post_process(self, result, image, mask, config): | |
| return result, image, mask | |
| def __call__(self, image, mask, config: Config): | |
| """ | |
| images: [H, W, C] RGB, not normalized | |
| masks: [H, W] | |
| return: BGR IMAGE | |
| """ | |
| inpaint_result = None | |
| logger.info(f"hd_strategy: {config.hd_strategy}") | |
| if config.hd_strategy == HDStrategy.CROP: | |
| if max(image.shape) > config.hd_strategy_crop_trigger_size: | |
| logger.info(f"Run crop strategy") | |
| boxes = boxes_from_mask(mask) | |
| crop_result = [] | |
| for box in boxes: | |
| crop_image, crop_box = self._run_box(image, mask, box, config) | |
| crop_result.append((crop_image, crop_box)) | |
| inpaint_result = image[:, :, ::-1] | |
| for crop_image, crop_box in crop_result: | |
| x1, y1, x2, y2 = crop_box | |
| inpaint_result[y1:y2, x1:x2, :] = crop_image | |
| elif config.hd_strategy == HDStrategy.RESIZE: | |
| if max(image.shape) > config.hd_strategy_resize_limit: | |
| origin_size = image.shape[:2] | |
| downsize_image = resize_max_size( | |
| image, size_limit=config.hd_strategy_resize_limit | |
| ) | |
| downsize_mask = resize_max_size( | |
| mask, size_limit=config.hd_strategy_resize_limit | |
| ) | |
| logger.info( | |
| f"Run resize strategy, origin size: {image.shape} forward size: {downsize_image.shape}" | |
| ) | |
| inpaint_result = self._pad_forward( | |
| downsize_image, downsize_mask, config | |
| ) | |
| # only paste masked area result | |
| inpaint_result = cv2.resize( | |
| inpaint_result, | |
| (origin_size[1], origin_size[0]), | |
| interpolation=cv2.INTER_CUBIC, | |
| ) | |
| original_pixel_indices = mask < 127 | |
| inpaint_result[original_pixel_indices] = image[:, :, ::-1][ | |
| original_pixel_indices | |
| ] | |
| if inpaint_result is None: | |
| inpaint_result = self._pad_forward(image, mask, config) | |
| return inpaint_result | |
| def _crop_box(self, image, mask, box, config: Config): | |
| """ | |
| Args: | |
| image: [H, W, C] RGB | |
| mask: [H, W, 1] | |
| box: [left,top,right,bottom] | |
| Returns: | |
| BGR IMAGE, (l, r, r, b) | |
| """ | |
| box_h = box[3] - box[1] | |
| box_w = box[2] - box[0] | |
| cx = (box[0] + box[2]) // 2 | |
| cy = (box[1] + box[3]) // 2 | |
| img_h, img_w = image.shape[:2] | |
| w = box_w + config.hd_strategy_crop_margin * 2 | |
| h = box_h + config.hd_strategy_crop_margin * 2 | |
| _l = cx - w // 2 | |
| _r = cx + w // 2 | |
| _t = cy - h // 2 | |
| _b = cy + h // 2 | |
| l = max(_l, 0) | |
| r = min(_r, img_w) | |
| t = max(_t, 0) | |
| b = min(_b, img_h) | |
| # try to get more context when crop around image edge | |
| if _l < 0: | |
| r += abs(_l) | |
| if _r > img_w: | |
| l -= _r - img_w | |
| if _t < 0: | |
| b += abs(_t) | |
| if _b > img_h: | |
| t -= _b - img_h | |
| l = max(l, 0) | |
| r = min(r, img_w) | |
| t = max(t, 0) | |
| b = min(b, img_h) | |
| crop_img = image[t:b, l:r, :] | |
| crop_mask = mask[t:b, l:r] | |
| logger.info(f"box size: ({box_h},{box_w}) crop size: {crop_img.shape}") | |
| return crop_img, crop_mask, [l, t, r, b] | |
| def _calculate_cdf(self, histogram): | |
| cdf = histogram.cumsum() | |
| normalized_cdf = cdf / float(cdf.max()) | |
| return normalized_cdf | |
| def _calculate_lookup(self, source_cdf, reference_cdf): | |
| lookup_table = np.zeros(256) | |
| lookup_val = 0 | |
| for source_index, source_val in enumerate(source_cdf): | |
| for reference_index, reference_val in enumerate(reference_cdf): | |
| if reference_val >= source_val: | |
| lookup_val = reference_index | |
| break | |
| lookup_table[source_index] = lookup_val | |
| return lookup_table | |
| def _match_histograms(self, source, reference, mask): | |
| transformed_channels = [] | |
| for channel in range(source.shape[-1]): | |
| source_channel = source[:, :, channel] | |
| reference_channel = reference[:, :, channel] | |
| # only calculate histograms for non-masked parts | |
| source_histogram, _ = np.histogram(source_channel[mask == 0], 256, [0, 256]) | |
| reference_histogram, _ = np.histogram( | |
| reference_channel[mask == 0], 256, [0, 256] | |
| ) | |
| source_cdf = self._calculate_cdf(source_histogram) | |
| reference_cdf = self._calculate_cdf(reference_histogram) | |
| lookup = self._calculate_lookup(source_cdf, reference_cdf) | |
| transformed_channels.append(cv2.LUT(source_channel, lookup)) | |
| result = cv2.merge(transformed_channels) | |
| result = cv2.convertScaleAbs(result) | |
| return result | |
| def _apply_cropper(self, image, mask, config: Config): | |
| img_h, img_w = image.shape[:2] | |
| l, t, w, h = ( | |
| config.croper_x, | |
| config.croper_y, | |
| config.croper_width, | |
| config.croper_height, | |
| ) | |
| r = l + w | |
| b = t + h | |
| l = max(l, 0) | |
| r = min(r, img_w) | |
| t = max(t, 0) | |
| b = min(b, img_h) | |
| crop_img = image[t:b, l:r, :] | |
| crop_mask = mask[t:b, l:r] | |
| return crop_img, crop_mask, (l, t, r, b) | |
| def _run_box(self, image, mask, box, config: Config): | |
| """ | |
| Args: | |
| image: [H, W, C] RGB | |
| mask: [H, W, 1] | |
| box: [left,top,right,bottom] | |
| Returns: | |
| BGR IMAGE | |
| """ | |
| crop_img, crop_mask, [l, t, r, b] = self._crop_box(image, mask, box, config) | |
| return self._pad_forward(crop_img, crop_mask, config), [l, t, r, b] | |
| class DiffusionInpaintModel(InpaintModel): | |
| def __call__(self, image, mask, config: Config): | |
| """ | |
| images: [H, W, C] RGB, not normalized | |
| masks: [H, W] | |
| return: BGR IMAGE | |
| """ | |
| # boxes = boxes_from_mask(mask) | |
| if config.use_croper: | |
| crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config) | |
| crop_image = self._scaled_pad_forward(crop_img, crop_mask, config) | |
| inpaint_result = image[:, :, ::-1] | |
| inpaint_result[t:b, l:r, :] = crop_image | |
| else: | |
| inpaint_result = self._scaled_pad_forward(image, mask, config) | |
| return inpaint_result | |
| def _scaled_pad_forward(self, image, mask, config: Config): | |
| longer_side_length = int(config.sd_scale * max(image.shape[:2])) | |
| origin_size = image.shape[:2] | |
| downsize_image = resize_max_size(image, size_limit=longer_side_length) | |
| downsize_mask = resize_max_size(mask, size_limit=longer_side_length) | |
| if config.sd_scale != 1: | |
| logger.info( | |
| f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}" | |
| ) | |
| inpaint_result = self._pad_forward(downsize_image, downsize_mask, config) | |
| # only paste masked area result | |
| inpaint_result = cv2.resize( | |
| inpaint_result, | |
| (origin_size[1], origin_size[0]), | |
| interpolation=cv2.INTER_CUBIC, | |
| ) | |
| original_pixel_indices = mask < 127 | |
| inpaint_result[original_pixel_indices] = image[:, :, ::-1][ | |
| original_pixel_indices | |
| ] | |
| return inpaint_result | |