Spaces:
Running
on
Zero
Running
on
Zero
2025-08-01 10:49 π
Browse files- app.py +5 -5
- models/__init__.py +0 -29
- models/clip_ebc/convnext.py +2 -64
- models/clip_ebc/mobileclip.py +1 -69
- models/clip_ebc/model.py +0 -42
- models/clip_ebc/resnet.py +2 -87
- models/clip_ebc/vit.py +8 -53
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -791,7 +791,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
| 791 |
gr.Markdown("""
|
| 792 |
### Step-by-step Guide:
|
| 793 |
|
| 794 |
-
1. **ποΈ Select Model**: Choose your preferred model variant, pre-
|
| 795 |
2. **πΈ Upload Image**: Click the image area to upload your crowd photo or use clipboard
|
| 796 |
3. **π Analyze**: Click the "Analyze Crowd" button to start processing
|
| 797 |
4. **π View Results**: Examine the density maps and crowd count in the output panels
|
|
@@ -821,20 +821,20 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
| 821 |
- **ZIP-N**: Nano model for mobile applications
|
| 822 |
- **ZIP-P**: Pico model for edge devices
|
| 823 |
|
| 824 |
-
### Datasets:
|
| 825 |
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
|
| 826 |
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
|
| 827 |
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
|
| 828 |
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
|
| 829 |
|
| 830 |
-
### Metrics:
|
| 831 |
-
- **MAE**: Mean Absolute Error - average counting error
|
| 832 |
- **NAE**: Normalized Absolute Error - relative counting error
|
| 833 |
""")
|
| 834 |
|
| 835 |
demo.launch(
|
| 836 |
server_name="0.0.0.0",
|
| 837 |
-
server_port=
|
| 838 |
show_api=False,
|
| 839 |
share=False
|
| 840 |
)
|
|
|
|
| 791 |
gr.Markdown("""
|
| 792 |
### Step-by-step Guide:
|
| 793 |
|
| 794 |
+
1. **ποΈ Select Model**: Choose your preferred model variant, pre-training dataset, and pre-training evaluation metric from the dropdown
|
| 795 |
2. **πΈ Upload Image**: Click the image area to upload your crowd photo or use clipboard
|
| 796 |
3. **π Analyze**: Click the "Analyze Crowd" button to start processing
|
| 797 |
4. **π View Results**: Examine the density maps and crowd count in the output panels
|
|
|
|
| 821 |
- **ZIP-N**: Nano model for mobile applications
|
| 822 |
- **ZIP-P**: Pico model for edge devices
|
| 823 |
|
| 824 |
+
### Pre-trainining Datasets:
|
| 825 |
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
|
| 826 |
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
|
| 827 |
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
|
| 828 |
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
|
| 829 |
|
| 830 |
+
### Pre-trainining Evaluation Metrics:
|
| 831 |
+
- **MAE**: Mean Absolute Error - average counting error.
|
| 832 |
- **NAE**: Normalized Absolute Error - relative counting error
|
| 833 |
""")
|
| 834 |
|
| 835 |
demo.launch(
|
| 836 |
server_name="0.0.0.0",
|
| 837 |
+
server_port=7861,
|
| 838 |
show_api=False,
|
| 839 |
share=False
|
| 840 |
)
|
models/__init__.py
CHANGED
|
@@ -17,12 +17,6 @@ def get_model(
|
|
| 17 |
num_vpt: Optional[int] = None,
|
| 18 |
vpt_drop: Optional[float] = None,
|
| 19 |
input_size: Optional[int] = None,
|
| 20 |
-
adapter: bool = False,
|
| 21 |
-
adapter_reduction: Optional[int] = None,
|
| 22 |
-
lora: bool = False,
|
| 23 |
-
lora_rank: Optional[int] = None,
|
| 24 |
-
lora_alpha: Optional[int] = None,
|
| 25 |
-
lora_dropout: Optional[float] = None,
|
| 26 |
norm: str = "none",
|
| 27 |
act: str = "none",
|
| 28 |
text_prompts: Optional[List[str]] = None
|
|
@@ -41,15 +35,6 @@ def get_model(
|
|
| 41 |
num_vpt = model_info["config"].get("num_vpt", None)
|
| 42 |
vpt_drop = model_info["config"].get("vpt_drop", None)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
adapter = model_info["config"].get("adapter", False)
|
| 46 |
-
adapter_reduction = model_info["config"].get("adapter_reduction", None)
|
| 47 |
-
|
| 48 |
-
lora = model_info["config"].get("lora", False)
|
| 49 |
-
lora_rank = model_info["config"].get("lora_rank", None)
|
| 50 |
-
lora_alpha = model_info["config"].get("lora_alpha", None)
|
| 51 |
-
lora_dropout = model_info["config"].get("lora_dropout", None)
|
| 52 |
-
|
| 53 |
input_size = model_info["config"].get("input_size", None)
|
| 54 |
text_prompts = model_info["config"].get("text_prompts", None)
|
| 55 |
|
|
@@ -81,12 +66,6 @@ def get_model(
|
|
| 81 |
num_vpt=num_vpt,
|
| 82 |
vpt_drop=vpt_drop,
|
| 83 |
input_size=input_size,
|
| 84 |
-
adapter=adapter,
|
| 85 |
-
adapter_reduction=adapter_reduction,
|
| 86 |
-
lora=lora,
|
| 87 |
-
lora_rank=lora_rank,
|
| 88 |
-
lora_alpha=lora_alpha,
|
| 89 |
-
lora_dropout=lora_dropout,
|
| 90 |
text_prompts=text_prompts,
|
| 91 |
norm=norm,
|
| 92 |
act=act
|
|
@@ -101,20 +80,12 @@ def get_model(
|
|
| 101 |
"num_vpt": num_vpt,
|
| 102 |
"vpt_drop": vpt_drop,
|
| 103 |
"input_size": input_size,
|
| 104 |
-
"adapter": adapter,
|
| 105 |
-
"adapter_reduction": adapter_reduction,
|
| 106 |
-
"lora": lora,
|
| 107 |
-
"lora_rank": lora_rank,
|
| 108 |
-
"lora_alpha": lora_alpha,
|
| 109 |
-
"lora_dropout": lora_dropout,
|
| 110 |
"text_prompts": model.text_prompts,
|
| 111 |
"norm": norm,
|
| 112 |
"act": act
|
| 113 |
}
|
| 114 |
|
| 115 |
else:
|
| 116 |
-
assert not adapter, "adapter for non-CLIP models is not implemented yet"
|
| 117 |
-
assert not lora, "lora for non-CLIP models is not implemented yet"
|
| 118 |
model = _ebc(
|
| 119 |
model_name=model_name,
|
| 120 |
block_size=block_size,
|
|
|
|
| 17 |
num_vpt: Optional[int] = None,
|
| 18 |
vpt_drop: Optional[float] = None,
|
| 19 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
norm: str = "none",
|
| 21 |
act: str = "none",
|
| 22 |
text_prompts: Optional[List[str]] = None
|
|
|
|
| 35 |
num_vpt = model_info["config"].get("num_vpt", None)
|
| 36 |
vpt_drop = model_info["config"].get("vpt_drop", None)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
input_size = model_info["config"].get("input_size", None)
|
| 39 |
text_prompts = model_info["config"].get("text_prompts", None)
|
| 40 |
|
|
|
|
| 66 |
num_vpt=num_vpt,
|
| 67 |
vpt_drop=vpt_drop,
|
| 68 |
input_size=input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
text_prompts=text_prompts,
|
| 70 |
norm=norm,
|
| 71 |
act=act
|
|
|
|
| 80 |
"num_vpt": num_vpt,
|
| 81 |
"vpt_drop": vpt_drop,
|
| 82 |
"input_size": input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
"text_prompts": model.text_prompts,
|
| 84 |
"norm": norm,
|
| 85 |
"act": act
|
| 86 |
}
|
| 87 |
|
| 88 |
else:
|
|
|
|
|
|
|
| 89 |
model = _ebc(
|
| 90 |
model_name=model_name,
|
| 91 |
block_size=block_size,
|
models/clip_ebc/convnext.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
| 3 |
-
from peft import get_peft_model, LoraConfig
|
| 4 |
|
| 5 |
-
from ..utils import ConvRefine
|
| 6 |
from ..utils import ConvUpsample, _get_norm_layer, _get_activation
|
| 7 |
|
| 8 |
|
|
@@ -41,8 +40,6 @@ class ConvNeXt(nn.Module):
|
|
| 41 |
model_name: str,
|
| 42 |
weight_name: str,
|
| 43 |
block_size: int = 16,
|
| 44 |
-
adapter: bool = False,
|
| 45 |
-
adapter_reduction: int = 4,
|
| 46 |
norm: str = "none",
|
| 47 |
act: str = "none"
|
| 48 |
) -> None:
|
|
@@ -55,22 +52,11 @@ class ConvNeXt(nn.Module):
|
|
| 55 |
|
| 56 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 57 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
| 58 |
-
|
| 59 |
-
self.adapter = adapter
|
| 60 |
-
if adapter:
|
| 61 |
-
self.adapter_reduction = adapter_reduction
|
| 62 |
-
for param in model.parameters():
|
| 63 |
-
param.requires_grad = False
|
| 64 |
|
| 65 |
self.stem = model.trunk.stem
|
| 66 |
self.depth = len(model.trunk.stages)
|
| 67 |
for idx, stage in enumerate(model.trunk.stages):
|
| 68 |
setattr(self, f"stage{idx}", stage)
|
| 69 |
-
if adapter:
|
| 70 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
| 71 |
-
in_channels=stage.blocks[-1].mlp.fc2.out_features,
|
| 72 |
-
bottleneck_channels=stage.blocks[-1].mlp.fc2.out_features // adapter_reduction,
|
| 73 |
-
) if idx < self.depth - 1 else nn.Identity()) # No adapter for the last stage
|
| 74 |
|
| 75 |
if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
|
| 76 |
self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
|
|
@@ -125,30 +111,12 @@ class ConvNeXt(nn.Module):
|
|
| 125 |
),
|
| 126 |
)
|
| 127 |
|
| 128 |
-
def train(self, mode: bool = True):
|
| 129 |
-
if self.adapter and mode:
|
| 130 |
-
# training:
|
| 131 |
-
self.stem.eval()
|
| 132 |
-
|
| 133 |
-
for idx in range(self.depth):
|
| 134 |
-
getattr(self, f"stage{idx}").eval()
|
| 135 |
-
getattr(self, f"adapter{idx}").train()
|
| 136 |
-
|
| 137 |
-
self.refiner.train()
|
| 138 |
-
|
| 139 |
-
else:
|
| 140 |
-
# evaluation:
|
| 141 |
-
for module in self.children():
|
| 142 |
-
module.train(mode)
|
| 143 |
-
|
| 144 |
def forward(self, x: Tensor) -> Tensor:
|
| 145 |
x = self.stem(x)
|
| 146 |
|
| 147 |
for idx in range(self.depth):
|
| 148 |
x = getattr(self, f"stage{idx}")(x)
|
| 149 |
-
|
| 150 |
-
x = getattr(self, f"adapter{idx}")(x)
|
| 151 |
-
|
| 152 |
x = self.refiner(x)
|
| 153 |
return x
|
| 154 |
|
|
@@ -157,44 +125,14 @@ def _convnext(
|
|
| 157 |
model_name: str,
|
| 158 |
weight_name: str,
|
| 159 |
block_size: int = 16,
|
| 160 |
-
adapter: bool = False,
|
| 161 |
-
adapter_reduction: int = 4,
|
| 162 |
-
lora: bool = False,
|
| 163 |
-
lora_rank: int = 16,
|
| 164 |
-
lora_alpha: float = 32.0,
|
| 165 |
-
lora_dropout: float = 0.1,
|
| 166 |
norm: str = "none",
|
| 167 |
act: str = "none"
|
| 168 |
) -> ConvNeXt:
|
| 169 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
| 170 |
model = ConvNeXt(
|
| 171 |
model_name=model_name,
|
| 172 |
weight_name=weight_name,
|
| 173 |
block_size=block_size,
|
| 174 |
-
adapter=adapter,
|
| 175 |
-
adapter_reduction=adapter_reduction,
|
| 176 |
norm=norm,
|
| 177 |
act=act
|
| 178 |
)
|
| 179 |
-
|
| 180 |
-
if lora:
|
| 181 |
-
target_modules = []
|
| 182 |
-
for name, module in model.named_modules():
|
| 183 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)) and "refiner" not in name:
|
| 184 |
-
target_modules.append(name)
|
| 185 |
-
|
| 186 |
-
lora_config = LoraConfig(
|
| 187 |
-
r=lora_rank,
|
| 188 |
-
lora_alpha=lora_alpha,
|
| 189 |
-
lora_dropout=lora_dropout,
|
| 190 |
-
bias="none",
|
| 191 |
-
target_modules=target_modules,
|
| 192 |
-
)
|
| 193 |
-
model = get_peft_model(model, lora_config)
|
| 194 |
-
|
| 195 |
-
# Unfreeze refiner
|
| 196 |
-
for name, module in model.named_modules():
|
| 197 |
-
if "refiner" in name:
|
| 198 |
-
module.requires_grad_(True)
|
| 199 |
-
|
| 200 |
return model
|
|
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
|
|
|
| 3 |
|
| 4 |
+
from ..utils import ConvRefine
|
| 5 |
from ..utils import ConvUpsample, _get_norm_layer, _get_activation
|
| 6 |
|
| 7 |
|
|
|
|
| 40 |
model_name: str,
|
| 41 |
weight_name: str,
|
| 42 |
block_size: int = 16,
|
|
|
|
|
|
|
| 43 |
norm: str = "none",
|
| 44 |
act: str = "none"
|
| 45 |
) -> None:
|
|
|
|
| 52 |
|
| 53 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 54 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
self.stem = model.trunk.stem
|
| 57 |
self.depth = len(model.trunk.stages)
|
| 58 |
for idx, stage in enumerate(model.trunk.stages):
|
| 59 |
setattr(self, f"stage{idx}", stage)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
|
| 62 |
self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
|
|
|
|
| 111 |
),
|
| 112 |
)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
def forward(self, x: Tensor) -> Tensor:
|
| 115 |
x = self.stem(x)
|
| 116 |
|
| 117 |
for idx in range(self.depth):
|
| 118 |
x = getattr(self, f"stage{idx}")(x)
|
| 119 |
+
|
|
|
|
|
|
|
| 120 |
x = self.refiner(x)
|
| 121 |
return x
|
| 122 |
|
|
|
|
| 125 |
model_name: str,
|
| 126 |
weight_name: str,
|
| 127 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
norm: str = "none",
|
| 129 |
act: str = "none"
|
| 130 |
) -> ConvNeXt:
|
|
|
|
| 131 |
model = ConvNeXt(
|
| 132 |
model_name=model_name,
|
| 133 |
weight_name=weight_name,
|
| 134 |
block_size=block_size,
|
|
|
|
|
|
|
| 135 |
norm=norm,
|
| 136 |
act=act
|
| 137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
return model
|
models/clip_ebc/mobileclip.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
| 3 |
-
from peft import get_peft_model, LoraConfig
|
| 4 |
|
| 5 |
-
from ..utils import ConvRefine, ConvUpsample
|
| 6 |
from ..utils import _get_norm_layer, _get_activation
|
| 7 |
|
| 8 |
|
|
@@ -29,8 +28,6 @@ class MobileCLIP(nn.Module):
|
|
| 29 |
model_name: str,
|
| 30 |
weight_name: str,
|
| 31 |
block_size: int = 16,
|
| 32 |
-
adapter: bool = False,
|
| 33 |
-
adapter_reduction: int = 4,
|
| 34 |
norm: str = "none",
|
| 35 |
act: str = "none"
|
| 36 |
) -> None:
|
|
@@ -44,21 +41,10 @@ class MobileCLIP(nn.Module):
|
|
| 44 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 45 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
| 46 |
|
| 47 |
-
self.adapter = adapter
|
| 48 |
-
if adapter:
|
| 49 |
-
for param in model.parameters():
|
| 50 |
-
param.requires_grad = False
|
| 51 |
-
|
| 52 |
self.stem = model.trunk.stem
|
| 53 |
self.stages = model.trunk.stages
|
| 54 |
|
| 55 |
self.depth = len(model.trunk.stages)
|
| 56 |
-
for idx, stage in enumerate(model.trunk.stages):
|
| 57 |
-
if adapter:
|
| 58 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
| 59 |
-
in_channels=stage.blocks[-1].mlp.fc2.out_channels,
|
| 60 |
-
bottleneck_channels=stage.blocks[-1].mlp.fc2.out_channels // adapter_reduction,
|
| 61 |
-
))
|
| 62 |
|
| 63 |
self.final_conv = model.trunk.final_conv
|
| 64 |
|
|
@@ -114,31 +100,12 @@ class MobileCLIP(nn.Module):
|
|
| 114 |
groups=refiner_groups[self.model_name],
|
| 115 |
),
|
| 116 |
)
|
| 117 |
-
|
| 118 |
-
def train(self, mode: bool = True):
|
| 119 |
-
if self.adapter and mode:
|
| 120 |
-
# training:
|
| 121 |
-
self.stem.eval()
|
| 122 |
-
|
| 123 |
-
for idx in range(self.depth):
|
| 124 |
-
getattr(self, f"stage{idx}").eval()
|
| 125 |
-
getattr(self, f"adapter{idx}").train()
|
| 126 |
-
|
| 127 |
-
self.final_conv.eval()
|
| 128 |
-
self.refiner.train()
|
| 129 |
-
|
| 130 |
-
else:
|
| 131 |
-
# evaluation:
|
| 132 |
-
for module in self.children():
|
| 133 |
-
module.train(mode)
|
| 134 |
|
| 135 |
def forward(self, x: Tensor) -> Tensor:
|
| 136 |
x = self.stem(x)
|
| 137 |
|
| 138 |
for idx in range(self.depth):
|
| 139 |
x = self.stages[idx](x)
|
| 140 |
-
if self.adapter:
|
| 141 |
-
x = getattr(self, f"adapter{idx}")(x)
|
| 142 |
|
| 143 |
x = self.final_conv(x)
|
| 144 |
|
|
@@ -150,49 +117,14 @@ def _mobileclip(
|
|
| 150 |
model_name: str,
|
| 151 |
weight_name: str,
|
| 152 |
block_size: int = 16,
|
| 153 |
-
adapter: bool = False,
|
| 154 |
-
adapter_reduction: int = 4,
|
| 155 |
-
lora: bool = False,
|
| 156 |
-
lora_rank: int = 16,
|
| 157 |
-
lora_alpha: float = 32.0,
|
| 158 |
-
lora_dropout: float = 0.1,
|
| 159 |
norm: str = "none",
|
| 160 |
act: str = "none"
|
| 161 |
) -> MobileCLIP:
|
| 162 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
| 163 |
model = MobileCLIP(
|
| 164 |
model_name=model_name,
|
| 165 |
weight_name=weight_name,
|
| 166 |
block_size=block_size,
|
| 167 |
-
adapter=adapter,
|
| 168 |
-
adapter_reduction=adapter_reduction,
|
| 169 |
norm=norm,
|
| 170 |
act=act
|
| 171 |
)
|
| 172 |
-
|
| 173 |
-
if lora:
|
| 174 |
-
target_modules = []
|
| 175 |
-
for name, module in model.named_modules():
|
| 176 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 177 |
-
target_modules.append(name)
|
| 178 |
-
|
| 179 |
-
lora_config = LoraConfig(
|
| 180 |
-
r=lora_rank,
|
| 181 |
-
lora_alpha=lora_alpha,
|
| 182 |
-
lora_dropout=lora_dropout,
|
| 183 |
-
bias="none",
|
| 184 |
-
target_modules=target_modules,
|
| 185 |
-
)
|
| 186 |
-
model = get_peft_model(model, lora_config)
|
| 187 |
-
|
| 188 |
-
# Unfreeze the BN layers
|
| 189 |
-
for name, module in model.named_modules() and "refiner" not in name:
|
| 190 |
-
if isinstance(module, nn.BatchNorm2d):
|
| 191 |
-
module.requires_grad_(True)
|
| 192 |
-
|
| 193 |
-
# Unfreeze refiner
|
| 194 |
-
for name, module in model.named_modules():
|
| 195 |
-
if "refiner" in name:
|
| 196 |
-
module.requires_grad_(True)
|
| 197 |
-
|
| 198 |
return model
|
|
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
|
|
|
| 3 |
|
| 4 |
+
from ..utils import ConvRefine, ConvUpsample
|
| 5 |
from ..utils import _get_norm_layer, _get_activation
|
| 6 |
|
| 7 |
|
|
|
|
| 28 |
model_name: str,
|
| 29 |
weight_name: str,
|
| 30 |
block_size: int = 16,
|
|
|
|
|
|
|
| 31 |
norm: str = "none",
|
| 32 |
act: str = "none"
|
| 33 |
) -> None:
|
|
|
|
| 41 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 42 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
self.stem = model.trunk.stem
|
| 45 |
self.stages = model.trunk.stages
|
| 46 |
|
| 47 |
self.depth = len(model.trunk.stages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
self.final_conv = model.trunk.final_conv
|
| 50 |
|
|
|
|
| 100 |
groups=refiner_groups[self.model_name],
|
| 101 |
),
|
| 102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def forward(self, x: Tensor) -> Tensor:
|
| 105 |
x = self.stem(x)
|
| 106 |
|
| 107 |
for idx in range(self.depth):
|
| 108 |
x = self.stages[idx](x)
|
|
|
|
|
|
|
| 109 |
|
| 110 |
x = self.final_conv(x)
|
| 111 |
|
|
|
|
| 117 |
model_name: str,
|
| 118 |
weight_name: str,
|
| 119 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
norm: str = "none",
|
| 121 |
act: str = "none"
|
| 122 |
) -> MobileCLIP:
|
|
|
|
| 123 |
model = MobileCLIP(
|
| 124 |
model_name=model_name,
|
| 125 |
weight_name=weight_name,
|
| 126 |
block_size=block_size,
|
|
|
|
|
|
|
| 127 |
norm=norm,
|
| 128 |
act=act
|
| 129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
return model
|
models/clip_ebc/model.py
CHANGED
|
@@ -31,12 +31,6 @@ class CLIP_EBC(nn.Module):
|
|
| 31 |
num_vpt: Optional[int] = None,
|
| 32 |
vpt_drop: Optional[float] = None,
|
| 33 |
input_size: Optional[int] = None,
|
| 34 |
-
adapter: Optional[bool] = False,
|
| 35 |
-
adapter_reduction: Optional[int] = None,
|
| 36 |
-
lora: Optional[bool] = False,
|
| 37 |
-
lora_rank: Optional[int] = None,
|
| 38 |
-
lora_alpha: Optional[float] = None,
|
| 39 |
-
lora_dropout: Optional[float] = None,
|
| 40 |
text_prompts: Optional[Dict[str, List[str]]] = None,
|
| 41 |
norm: Optional[str] = "none",
|
| 42 |
act: Optional[str] = "none",
|
|
@@ -70,12 +64,6 @@ class CLIP_EBC(nn.Module):
|
|
| 70 |
num_vpt=num_vpt,
|
| 71 |
vpt_drop=vpt_drop,
|
| 72 |
block_size=block_size,
|
| 73 |
-
adapter=adapter,
|
| 74 |
-
adapter_reduction=adapter_reduction,
|
| 75 |
-
lora=lora,
|
| 76 |
-
lora_rank=lora_rank,
|
| 77 |
-
lora_alpha=lora_alpha,
|
| 78 |
-
lora_dropout=lora_dropout,
|
| 79 |
input_size=(input_size, input_size),
|
| 80 |
norm=norm,
|
| 81 |
act=act
|
|
@@ -85,12 +73,6 @@ class CLIP_EBC(nn.Module):
|
|
| 85 |
model_name=model_name,
|
| 86 |
weight_name=weight_name,
|
| 87 |
block_size=block_size,
|
| 88 |
-
adapter=adapter,
|
| 89 |
-
adapter_reduction=adapter_reduction,
|
| 90 |
-
lora=lora,
|
| 91 |
-
lora_rank=lora_rank,
|
| 92 |
-
lora_alpha=lora_alpha,
|
| 93 |
-
lora_dropout=lora_dropout,
|
| 94 |
norm=norm,
|
| 95 |
act=act
|
| 96 |
)
|
|
@@ -99,12 +81,6 @@ class CLIP_EBC(nn.Module):
|
|
| 99 |
model_name=model_name,
|
| 100 |
weight_name=weight_name,
|
| 101 |
block_size=block_size,
|
| 102 |
-
adapter=adapter,
|
| 103 |
-
adapter_reduction=adapter_reduction,
|
| 104 |
-
lora=lora,
|
| 105 |
-
lora_rank=lora_rank,
|
| 106 |
-
lora_alpha=lora_alpha,
|
| 107 |
-
lora_dropout=lora_dropout,
|
| 108 |
norm=norm,
|
| 109 |
act=act
|
| 110 |
)
|
|
@@ -113,12 +89,6 @@ class CLIP_EBC(nn.Module):
|
|
| 113 |
model_name=model_name,
|
| 114 |
weight_name=weight_name,
|
| 115 |
block_size=block_size,
|
| 116 |
-
adapter=adapter,
|
| 117 |
-
adapter_reduction=adapter_reduction,
|
| 118 |
-
lora=lora,
|
| 119 |
-
lora_rank=lora_rank,
|
| 120 |
-
lora_alpha=lora_alpha,
|
| 121 |
-
lora_dropout=lora_dropout,
|
| 122 |
norm=norm,
|
| 123 |
act=act
|
| 124 |
)
|
|
@@ -240,12 +210,6 @@ def _clip_ebc(
|
|
| 240 |
num_vpt: Optional[int] = None,
|
| 241 |
vpt_drop: Optional[float] = None,
|
| 242 |
input_size: Optional[int] = None,
|
| 243 |
-
adapter: Optional[bool] = False,
|
| 244 |
-
adapter_reduction: Optional[int] = None,
|
| 245 |
-
lora: Optional[bool] = False,
|
| 246 |
-
lora_rank: Optional[int] = None,
|
| 247 |
-
lora_alpha: Optional[float] = None,
|
| 248 |
-
lora_dropout: Optional[float] = None,
|
| 249 |
text_prompts: Optional[List[str]] = None,
|
| 250 |
norm: Optional[str] = "none",
|
| 251 |
act: Optional[str] = "none",
|
|
@@ -260,12 +224,6 @@ def _clip_ebc(
|
|
| 260 |
num_vpt=num_vpt,
|
| 261 |
vpt_drop=vpt_drop,
|
| 262 |
input_size=input_size,
|
| 263 |
-
adapter=adapter,
|
| 264 |
-
adapter_reduction=adapter_reduction,
|
| 265 |
-
lora=lora,
|
| 266 |
-
lora_rank=lora_rank,
|
| 267 |
-
lora_alpha=lora_alpha,
|
| 268 |
-
lora_dropout=lora_dropout,
|
| 269 |
text_prompts=text_prompts,
|
| 270 |
norm=norm,
|
| 271 |
act=act,
|
|
|
|
| 31 |
num_vpt: Optional[int] = None,
|
| 32 |
vpt_drop: Optional[float] = None,
|
| 33 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
text_prompts: Optional[Dict[str, List[str]]] = None,
|
| 35 |
norm: Optional[str] = "none",
|
| 36 |
act: Optional[str] = "none",
|
|
|
|
| 64 |
num_vpt=num_vpt,
|
| 65 |
vpt_drop=vpt_drop,
|
| 66 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
input_size=(input_size, input_size),
|
| 68 |
norm=norm,
|
| 69 |
act=act
|
|
|
|
| 73 |
model_name=model_name,
|
| 74 |
weight_name=weight_name,
|
| 75 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
norm=norm,
|
| 77 |
act=act
|
| 78 |
)
|
|
|
|
| 81 |
model_name=model_name,
|
| 82 |
weight_name=weight_name,
|
| 83 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
norm=norm,
|
| 85 |
act=act
|
| 86 |
)
|
|
|
|
| 89 |
model_name=model_name,
|
| 90 |
weight_name=weight_name,
|
| 91 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
norm=norm,
|
| 93 |
act=act
|
| 94 |
)
|
|
|
|
| 210 |
num_vpt: Optional[int] = None,
|
| 211 |
vpt_drop: Optional[float] = None,
|
| 212 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
text_prompts: Optional[List[str]] = None,
|
| 214 |
norm: Optional[str] = "none",
|
| 215 |
act: Optional[str] = "none",
|
|
|
|
| 224 |
num_vpt=num_vpt,
|
| 225 |
vpt_drop=vpt_drop,
|
| 226 |
input_size=input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
text_prompts=text_prompts,
|
| 228 |
norm=norm,
|
| 229 |
act=act,
|
models/clip_ebc/resnet.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
| 3 |
-
from peft import get_peft_model, LoraConfig
|
| 4 |
|
| 5 |
-
from ..utils import ConvRefine, ConvUpsample
|
| 6 |
from ..utils import _get_norm_layer, _get_activation
|
| 7 |
|
| 8 |
|
|
@@ -37,8 +36,6 @@ class ResNet(nn.Module):
|
|
| 37 |
model_name: str,
|
| 38 |
weight_name: str,
|
| 39 |
block_size: int = 16,
|
| 40 |
-
adapter: bool = False,
|
| 41 |
-
adapter_reduction: int = 4,
|
| 42 |
norm: str = "none",
|
| 43 |
act: str = "none"
|
| 44 |
) -> None:
|
|
@@ -52,11 +49,6 @@ class ResNet(nn.Module):
|
|
| 52 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 53 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
| 54 |
|
| 55 |
-
self.adapter = adapter
|
| 56 |
-
if adapter:
|
| 57 |
-
for param in model.parameters():
|
| 58 |
-
param.requires_grad = False
|
| 59 |
-
|
| 60 |
# Stem
|
| 61 |
self.conv1 = model.conv1
|
| 62 |
self.bn1 = model.bn1
|
|
@@ -73,12 +65,7 @@ class ResNet(nn.Module):
|
|
| 73 |
# Layers
|
| 74 |
for idx in range(1, 5):
|
| 75 |
setattr(self, f"layer{idx}", getattr(model, f"layer{idx}"))
|
| 76 |
-
|
| 77 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
| 78 |
-
in_channels=getattr(model, f"layer{idx}")[-1].conv3.out_channels,
|
| 79 |
-
bottleneck_channels=getattr(model, f"layer{idx}")[-1].conv3.out_channels // adapter_reduction,
|
| 80 |
-
) if idx < 4 else nn.Identity()) # No adapter for the last layer
|
| 81 |
-
|
| 82 |
self.in_features = model.attnpool.c_proj.weight.shape[1]
|
| 83 |
self.out_features = model.attnpool.c_proj.weight.shape[0]
|
| 84 |
|
|
@@ -129,31 +116,6 @@ class ResNet(nn.Module):
|
|
| 129 |
groups=refiner_groups[self.model_name],
|
| 130 |
),
|
| 131 |
)
|
| 132 |
-
|
| 133 |
-
def train(self, mode: bool = True):
|
| 134 |
-
if self.adapter and mode:
|
| 135 |
-
# training:
|
| 136 |
-
self.conv1.eval()
|
| 137 |
-
self.bn1.eval()
|
| 138 |
-
self.act1.eval()
|
| 139 |
-
self.conv2.eval()
|
| 140 |
-
self.bn2.eval()
|
| 141 |
-
self.act2.eval()
|
| 142 |
-
self.conv3.eval()
|
| 143 |
-
self.bn3.eval()
|
| 144 |
-
self.act3.eval()
|
| 145 |
-
self.avgpool.eval()
|
| 146 |
-
|
| 147 |
-
for idx in range(1, 5):
|
| 148 |
-
getattr(self, f"layer{idx}").eval()
|
| 149 |
-
getattr(self, f"adapter{idx}").train()
|
| 150 |
-
|
| 151 |
-
self.refiner.train()
|
| 152 |
-
|
| 153 |
-
else:
|
| 154 |
-
# evaluation:
|
| 155 |
-
for module in self.children():
|
| 156 |
-
module.train(mode)
|
| 157 |
|
| 158 |
def stem(self, x: Tensor) -> Tensor:
|
| 159 |
x = self.act1(self.bn1(self.conv1(x)))
|
|
@@ -166,21 +128,9 @@ class ResNet(nn.Module):
|
|
| 166 |
x = self.stem(x)
|
| 167 |
|
| 168 |
x = self.layer1(x)
|
| 169 |
-
if self.adapter:
|
| 170 |
-
x = self.adapter1(x)
|
| 171 |
-
|
| 172 |
x = self.layer2(x)
|
| 173 |
-
if self.adapter:
|
| 174 |
-
x = self.adapter2(x)
|
| 175 |
-
|
| 176 |
x = self.layer3(x)
|
| 177 |
-
if self.adapter:
|
| 178 |
-
x = self.adapter3(x)
|
| 179 |
-
|
| 180 |
x = self.layer4(x)
|
| 181 |
-
if self.adapter:
|
| 182 |
-
x = self.adapter4(x)
|
| 183 |
-
|
| 184 |
x = self.refiner(x)
|
| 185 |
return x
|
| 186 |
|
|
@@ -189,49 +139,14 @@ def _resnet(
|
|
| 189 |
model_name: str,
|
| 190 |
weight_name: str,
|
| 191 |
block_size: int = 16,
|
| 192 |
-
adapter: bool = False,
|
| 193 |
-
adapter_reduction: int = 4,
|
| 194 |
-
lora: bool = False,
|
| 195 |
-
lora_rank: int = 16,
|
| 196 |
-
lora_alpha: float = 32.0,
|
| 197 |
-
lora_dropout: float = 0.1,
|
| 198 |
norm: str = "none",
|
| 199 |
act: str = "none"
|
| 200 |
) -> ResNet:
|
| 201 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
| 202 |
model = ResNet(
|
| 203 |
model_name=model_name,
|
| 204 |
weight_name=weight_name,
|
| 205 |
block_size=block_size,
|
| 206 |
-
adapter=adapter,
|
| 207 |
-
adapter_reduction=adapter_reduction,
|
| 208 |
norm=norm,
|
| 209 |
act=act
|
| 210 |
)
|
| 211 |
-
|
| 212 |
-
if lora:
|
| 213 |
-
target_modules = []
|
| 214 |
-
for name, module in model.named_modules():
|
| 215 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 216 |
-
target_modules.append(name)
|
| 217 |
-
|
| 218 |
-
lora_config = LoraConfig(
|
| 219 |
-
r=lora_rank,
|
| 220 |
-
lora_alpha=lora_alpha,
|
| 221 |
-
lora_dropout=lora_dropout,
|
| 222 |
-
bias="none",
|
| 223 |
-
target_modules=target_modules,
|
| 224 |
-
)
|
| 225 |
-
model = get_peft_model(model, lora_config)
|
| 226 |
-
|
| 227 |
-
# Unfreeze BN layers
|
| 228 |
-
for name, module in model.named_modules():
|
| 229 |
-
if isinstance(module, nn.BatchNorm2d) and "refiner" not in name:
|
| 230 |
-
module.requires_grad_(True)
|
| 231 |
-
|
| 232 |
-
# Unfreeze refiner
|
| 233 |
-
for name, module in model.named_modules():
|
| 234 |
-
if "refiner" in name:
|
| 235 |
-
module.requires_grad_(True)
|
| 236 |
-
|
| 237 |
return model
|
|
|
|
| 1 |
from torch import nn, Tensor
|
| 2 |
import open_clip
|
|
|
|
| 3 |
|
| 4 |
+
from ..utils import ConvRefine, ConvUpsample
|
| 5 |
from ..utils import _get_norm_layer, _get_activation
|
| 6 |
|
| 7 |
|
|
|
|
| 36 |
model_name: str,
|
| 37 |
weight_name: str,
|
| 38 |
block_size: int = 16,
|
|
|
|
|
|
|
| 39 |
norm: str = "none",
|
| 40 |
act: str = "none"
|
| 41 |
) -> None:
|
|
|
|
| 49 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 50 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# Stem
|
| 53 |
self.conv1 = model.conv1
|
| 54 |
self.bn1 = model.bn1
|
|
|
|
| 65 |
# Layers
|
| 66 |
for idx in range(1, 5):
|
| 67 |
setattr(self, f"layer{idx}", getattr(model, f"layer{idx}"))
|
| 68 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
self.in_features = model.attnpool.c_proj.weight.shape[1]
|
| 70 |
self.out_features = model.attnpool.c_proj.weight.shape[0]
|
| 71 |
|
|
|
|
| 116 |
groups=refiner_groups[self.model_name],
|
| 117 |
),
|
| 118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def stem(self, x: Tensor) -> Tensor:
|
| 121 |
x = self.act1(self.bn1(self.conv1(x)))
|
|
|
|
| 128 |
x = self.stem(x)
|
| 129 |
|
| 130 |
x = self.layer1(x)
|
|
|
|
|
|
|
|
|
|
| 131 |
x = self.layer2(x)
|
|
|
|
|
|
|
|
|
|
| 132 |
x = self.layer3(x)
|
|
|
|
|
|
|
|
|
|
| 133 |
x = self.layer4(x)
|
|
|
|
|
|
|
|
|
|
| 134 |
x = self.refiner(x)
|
| 135 |
return x
|
| 136 |
|
|
|
|
| 139 |
model_name: str,
|
| 140 |
weight_name: str,
|
| 141 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
norm: str = "none",
|
| 143 |
act: str = "none"
|
| 144 |
) -> ResNet:
|
|
|
|
| 145 |
model = ResNet(
|
| 146 |
model_name=model_name,
|
| 147 |
weight_name=weight_name,
|
| 148 |
block_size=block_size,
|
|
|
|
|
|
|
| 149 |
norm=norm,
|
| 150 |
act=act
|
| 151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
return model
|
models/clip_ebc/vit.py
CHANGED
|
@@ -3,10 +3,9 @@ from torch import nn, Tensor
|
|
| 3 |
import math
|
| 4 |
from einops import rearrange
|
| 5 |
import open_clip
|
| 6 |
-
from peft import get_peft_model, LoraConfig
|
| 7 |
from typing import Optional, Tuple
|
| 8 |
|
| 9 |
-
from ..utils import interpolate_pos_embed
|
| 10 |
# from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample
|
| 11 |
from ..utils import ConvRefine, ConvDownsample, ConvUpsample
|
| 12 |
from ..utils import _get_norm_layer, _get_activation
|
|
@@ -73,8 +72,6 @@ class ViT(nn.Module):
|
|
| 73 |
block_size: int = 16,
|
| 74 |
num_vpt: int = 32,
|
| 75 |
vpt_drop: float = 0.0,
|
| 76 |
-
adapter: bool = False,
|
| 77 |
-
adapter_reduction: int = 4,
|
| 78 |
input_size: Optional[Tuple[int, int]] = None,
|
| 79 |
norm: str = "none",
|
| 80 |
act: str = "none"
|
|
@@ -82,18 +79,14 @@ class ViT(nn.Module):
|
|
| 82 |
super(ViT, self).__init__()
|
| 83 |
assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}."
|
| 84 |
assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}."
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
else:
|
| 89 |
-
assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
|
| 90 |
-
assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}."
|
| 91 |
|
| 92 |
self.model_name, self.weight_name = model_name, weight_name
|
| 93 |
self.block_size = block_size
|
| 94 |
self.num_vpt = num_vpt
|
| 95 |
self.vpt_drop = vpt_drop
|
| 96 |
-
self.adapter = adapter
|
| 97 |
|
| 98 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 99 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
|
@@ -119,15 +112,9 @@ class ViT(nn.Module):
|
|
| 119 |
# Setup VPT tokens
|
| 120 |
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
|
| 121 |
for idx in range(self.num_layers):
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
bottleneck_channels=self.embed_dim // adapter_reduction,
|
| 126 |
-
))
|
| 127 |
-
else:
|
| 128 |
-
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
|
| 129 |
-
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
|
| 130 |
-
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
|
| 131 |
|
| 132 |
# Adjust the positional embedding to match the new input size
|
| 133 |
self._adjust_pos_embed()
|
|
@@ -299,13 +286,10 @@ class ViT(nn.Module):
|
|
| 299 |
|
| 300 |
return x
|
| 301 |
|
| 302 |
-
def _forward_adapter(self, x: Tensor, idx: int) -> Tensor:
|
| 303 |
-
return getattr(self, f"adapter{idx}")(x)
|
| 304 |
-
|
| 305 |
def forward_encoder(self, x: Tensor) -> Tensor:
|
| 306 |
x = self._forward_patch_embed(x)
|
| 307 |
for idx in range(self.num_layers):
|
| 308 |
-
x = self.
|
| 309 |
x = self.ln_post(x)
|
| 310 |
return x
|
| 311 |
|
|
@@ -326,48 +310,19 @@ def _vit(
|
|
| 326 |
block_size: int = 16,
|
| 327 |
num_vpt: int = 32,
|
| 328 |
vpt_drop: float = 0.1,
|
| 329 |
-
adapter: bool = False,
|
| 330 |
-
adapter_reduction: int = 4,
|
| 331 |
-
lora: bool = False,
|
| 332 |
-
lora_rank: int = 16,
|
| 333 |
-
lora_alpha: float = 32.0,
|
| 334 |
-
lora_dropout: float = 0.1,
|
| 335 |
input_size: Optional[Tuple[int, int]] = None,
|
| 336 |
norm: str = "none",
|
| 337 |
act: str = "none"
|
| 338 |
) -> ViT:
|
| 339 |
-
assert not (lora and adapter), "LoRA and adapter cannot be used together."
|
| 340 |
model = ViT(
|
| 341 |
model_name=model_name,
|
| 342 |
weight_name=weight_name,
|
| 343 |
block_size=block_size,
|
| 344 |
num_vpt=num_vpt,
|
| 345 |
vpt_drop=vpt_drop,
|
| 346 |
-
adapter=adapter,
|
| 347 |
-
adapter_reduction=adapter_reduction,
|
| 348 |
input_size=input_size,
|
| 349 |
norm=norm,
|
| 350 |
act=act
|
| 351 |
)
|
| 352 |
|
| 353 |
-
if lora:
|
| 354 |
-
target_modules = []
|
| 355 |
-
for name, module in model.named_modules():
|
| 356 |
-
if isinstance(module, (nn.Linear, nn.Conv2d, nn.MultiheadAttention)) and "refiner" not in name:
|
| 357 |
-
target_modules.append(name)
|
| 358 |
-
|
| 359 |
-
lora_config = LoraConfig(
|
| 360 |
-
r=lora_rank,
|
| 361 |
-
lora_alpha=lora_alpha,
|
| 362 |
-
lora_dropout=lora_dropout,
|
| 363 |
-
bias="none",
|
| 364 |
-
target_modules=target_modules,
|
| 365 |
-
)
|
| 366 |
-
model = get_peft_model(model, lora_config)
|
| 367 |
-
|
| 368 |
-
# Unfreeze refiner
|
| 369 |
-
for name, module in model.named_modules():
|
| 370 |
-
if "refiner" in name:
|
| 371 |
-
module.requires_grad_(True)
|
| 372 |
-
|
| 373 |
return model
|
|
|
|
| 3 |
import math
|
| 4 |
from einops import rearrange
|
| 5 |
import open_clip
|
|
|
|
| 6 |
from typing import Optional, Tuple
|
| 7 |
|
| 8 |
+
from ..utils import interpolate_pos_embed
|
| 9 |
# from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample
|
| 10 |
from ..utils import ConvRefine, ConvDownsample, ConvUpsample
|
| 11 |
from ..utils import _get_norm_layer, _get_activation
|
|
|
|
| 72 |
block_size: int = 16,
|
| 73 |
num_vpt: int = 32,
|
| 74 |
vpt_drop: float = 0.0,
|
|
|
|
|
|
|
| 75 |
input_size: Optional[Tuple[int, int]] = None,
|
| 76 |
norm: str = "none",
|
| 77 |
act: str = "none"
|
|
|
|
| 79 |
super(ViT, self).__init__()
|
| 80 |
assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}."
|
| 81 |
assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}."
|
| 82 |
+
|
| 83 |
+
assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
|
| 84 |
+
assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}."
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
self.model_name, self.weight_name = model_name, weight_name
|
| 87 |
self.block_size = block_size
|
| 88 |
self.num_vpt = num_vpt
|
| 89 |
self.vpt_drop = vpt_drop
|
|
|
|
| 90 |
|
| 91 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
| 92 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
|
|
|
| 112 |
# Setup VPT tokens
|
| 113 |
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
|
| 114 |
for idx in range(self.num_layers):
|
| 115 |
+
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
|
| 116 |
+
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
|
| 117 |
+
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
# Adjust the positional embedding to match the new input size
|
| 120 |
self._adjust_pos_embed()
|
|
|
|
| 286 |
|
| 287 |
return x
|
| 288 |
|
|
|
|
|
|
|
|
|
|
| 289 |
def forward_encoder(self, x: Tensor) -> Tensor:
|
| 290 |
x = self._forward_patch_embed(x)
|
| 291 |
for idx in range(self.num_layers):
|
| 292 |
+
x = self._forward_vpt(x, idx)
|
| 293 |
x = self.ln_post(x)
|
| 294 |
return x
|
| 295 |
|
|
|
|
| 310 |
block_size: int = 16,
|
| 311 |
num_vpt: int = 32,
|
| 312 |
vpt_drop: float = 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
input_size: Optional[Tuple[int, int]] = None,
|
| 314 |
norm: str = "none",
|
| 315 |
act: str = "none"
|
| 316 |
) -> ViT:
|
|
|
|
| 317 |
model = ViT(
|
| 318 |
model_name=model_name,
|
| 319 |
weight_name=weight_name,
|
| 320 |
block_size=block_size,
|
| 321 |
num_vpt=num_vpt,
|
| 322 |
vpt_drop=vpt_drop,
|
|
|
|
|
|
|
| 323 |
input_size=input_size,
|
| 324 |
norm=norm,
|
| 325 |
act=act
|
| 326 |
)
|
| 327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
return model
|
requirements.txt
CHANGED
|
@@ -3,7 +3,6 @@ gradio==5.23.1
|
|
| 3 |
huggingface_hub==0.29.3
|
| 4 |
matplotlib==3.10.1
|
| 5 |
numpy==2.2.4
|
| 6 |
-
peft==0.7.0
|
| 7 |
Pillow==11.3.0
|
| 8 |
spaces==0.39.0
|
| 9 |
timm==1.0.19
|
|
|
|
| 3 |
huggingface_hub==0.29.3
|
| 4 |
matplotlib==3.10.1
|
| 5 |
numpy==2.2.4
|
|
|
|
| 6 |
Pillow==11.3.0
|
| 7 |
spaces==0.39.0
|
| 8 |
timm==1.0.19
|