Spaces:
Running
on
Zero
Running
on
Zero
2025-07-31 21:34 π
Browse files
app.py
CHANGED
|
@@ -22,6 +22,7 @@ alpha = 0.8
|
|
| 22 |
EPS = 1e-8
|
| 23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
loaded_model = None
|
|
|
|
| 25 |
|
| 26 |
pretrained_models = [
|
| 27 |
"ZIP-B @ ShanghaiTech A", "ZIP-B @ ShanghaiTech B", "ZIP-B @ UCF-QNRF", "ZIP-B @ NWPU-Crowd",
|
|
@@ -31,6 +32,39 @@ pretrained_models = [
|
|
| 31 |
"ZIP-P @ ShanghaiTech A", "ZIP-P @ ShanghaiTech B", "ZIP-P @ UCF-QNRF"
|
| 32 |
]
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# -----------------------------
|
| 35 |
# Define the model architecture
|
| 36 |
# -----------------------------
|
|
@@ -242,7 +276,7 @@ def predict(image: Image.Image, variant_dataset: str, metric: str):
|
|
| 242 |
Given an input image, preprocess it, run the model to obtain a density map,
|
| 243 |
compute the total crowd count, and prepare the density map for display.
|
| 244 |
"""
|
| 245 |
-
|
| 246 |
variant, dataset = variant_dataset.split(" @ ")
|
| 247 |
|
| 248 |
if dataset == "ShanghaiTech A":
|
|
@@ -254,8 +288,16 @@ def predict(image: Image.Image, variant_dataset: str, metric: str):
|
|
| 254 |
elif dataset == "NWPU-Crowd":
|
| 255 |
dataset_name = "nwpu"
|
| 256 |
|
| 257 |
-
if loaded_model is None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
if not hasattr(loaded_model, "input_size"):
|
| 261 |
if dataset_name == "sha":
|
|
@@ -409,6 +451,12 @@ with gr.Blocks() as demo:
|
|
| 409 |
label="Select Best Metric"
|
| 410 |
)
|
| 411 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
input_img = gr.Image(label="Input Image", sources=["upload", "clipboard"], type="pil")
|
| 413 |
submit_btn = gr.Button("Predict")
|
| 414 |
|
|
@@ -422,6 +470,21 @@ with gr.Blocks() as demo:
|
|
| 422 |
output_sampling_zero_map = gr.Image(label="Sampling Zero Map", type="pil")
|
| 423 |
output_complete_zero_map = gr.Image(label="Complete Zero Map", type="pil")
|
| 424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
submit_btn.click(
|
| 426 |
fn=predict,
|
| 427 |
inputs=[input_img, model_dropdown, metric_dropdown],
|
|
|
|
| 22 |
EPS = 1e-8
|
| 23 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
loaded_model = None
|
| 25 |
+
current_model_config = {"variant": None, "dataset": None, "metric": None}
|
| 26 |
|
| 27 |
pretrained_models = [
|
| 28 |
"ZIP-B @ ShanghaiTech A", "ZIP-B @ ShanghaiTech B", "ZIP-B @ UCF-QNRF", "ZIP-B @ NWPU-Crowd",
|
|
|
|
| 32 |
"ZIP-P @ ShanghaiTech A", "ZIP-P @ ShanghaiTech B", "ZIP-P @ UCF-QNRF"
|
| 33 |
]
|
| 34 |
|
| 35 |
+
# -----------------------------
|
| 36 |
+
# Model management functions
|
| 37 |
+
# -----------------------------
|
| 38 |
+
def update_model_if_needed(variant_dataset: str, metric: str):
|
| 39 |
+
"""
|
| 40 |
+
Load a new model only if the configuration has changed.
|
| 41 |
+
"""
|
| 42 |
+
global loaded_model, current_model_config
|
| 43 |
+
variant, dataset = variant_dataset.split(" @ ")
|
| 44 |
+
|
| 45 |
+
if dataset == "ShanghaiTech A":
|
| 46 |
+
dataset_name = "sha"
|
| 47 |
+
elif dataset == "ShanghaiTech B":
|
| 48 |
+
dataset_name = "shb"
|
| 49 |
+
elif dataset == "UCF-QNRF":
|
| 50 |
+
dataset_name = "qnrf"
|
| 51 |
+
elif dataset == "NWPU-Crowd":
|
| 52 |
+
dataset_name = "nwpu"
|
| 53 |
+
|
| 54 |
+
if (loaded_model is None or
|
| 55 |
+
current_model_config["variant"] != variant or
|
| 56 |
+
current_model_config["dataset"] != dataset_name or
|
| 57 |
+
current_model_config["metric"] != metric):
|
| 58 |
+
|
| 59 |
+
print(f"Loading new model: {variant} @ {dataset} with {metric} metric")
|
| 60 |
+
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
|
| 61 |
+
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
|
| 62 |
+
return f"Model loaded: {variant} @ {dataset} ({metric})"
|
| 63 |
+
else:
|
| 64 |
+
print(f"Using cached model: {variant} @ {dataset} with {metric} metric")
|
| 65 |
+
return f"Model already loaded: {variant} @ {dataset} ({metric})"
|
| 66 |
+
|
| 67 |
+
|
| 68 |
# -----------------------------
|
| 69 |
# Define the model architecture
|
| 70 |
# -----------------------------
|
|
|
|
| 276 |
Given an input image, preprocess it, run the model to obtain a density map,
|
| 277 |
compute the total crowd count, and prepare the density map for display.
|
| 278 |
"""
|
| 279 |
+
global loaded_model, current_model_config
|
| 280 |
variant, dataset = variant_dataset.split(" @ ")
|
| 281 |
|
| 282 |
if dataset == "ShanghaiTech A":
|
|
|
|
| 288 |
elif dataset == "NWPU-Crowd":
|
| 289 |
dataset_name = "nwpu"
|
| 290 |
|
| 291 |
+
if (loaded_model is None or
|
| 292 |
+
current_model_config["variant"] != variant or
|
| 293 |
+
current_model_config["dataset"] != dataset_name or
|
| 294 |
+
current_model_config["metric"] != metric):
|
| 295 |
+
|
| 296 |
+
print(f"Loading new model: {variant} @ {dataset} with {metric} metric")
|
| 297 |
loaded_model = load_model(variant=variant, dataset=dataset_name, metric=metric)
|
| 298 |
+
current_model_config = {"variant": variant, "dataset": dataset_name, "metric": metric}
|
| 299 |
+
else:
|
| 300 |
+
print(f"Using cached model: {variant} @ {dataset} with {metric} metric")
|
| 301 |
|
| 302 |
if not hasattr(loaded_model, "input_size"):
|
| 303 |
if dataset_name == "sha":
|
|
|
|
| 451 |
label="Select Best Metric"
|
| 452 |
)
|
| 453 |
|
| 454 |
+
model_status = gr.Textbox(
|
| 455 |
+
label="Model Status",
|
| 456 |
+
value="No model loaded",
|
| 457 |
+
interactive=False
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
input_img = gr.Image(label="Input Image", sources=["upload", "clipboard"], type="pil")
|
| 461 |
submit_btn = gr.Button("Predict")
|
| 462 |
|
|
|
|
| 470 |
output_sampling_zero_map = gr.Image(label="Sampling Zero Map", type="pil")
|
| 471 |
output_complete_zero_map = gr.Image(label="Complete Zero Map", type="pil")
|
| 472 |
|
| 473 |
+
def on_model_change(variant_dataset, metric):
|
| 474 |
+
return update_model_if_needed(variant_dataset, metric)
|
| 475 |
+
|
| 476 |
+
model_dropdown.change(
|
| 477 |
+
fn=on_model_change,
|
| 478 |
+
inputs=[model_dropdown, metric_dropdown],
|
| 479 |
+
outputs=[model_status]
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
metric_dropdown.change(
|
| 483 |
+
fn=on_model_change,
|
| 484 |
+
inputs=[model_dropdown, metric_dropdown],
|
| 485 |
+
outputs=[model_status]
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
submit_btn.click(
|
| 489 |
fn=predict,
|
| 490 |
inputs=[input_img, model_dropdown, metric_dropdown],
|