Spaces:
Running
on
Zero
Running
on
Zero
| from torch import nn, Tensor | |
| from typing import Union | |
| from .blocks import DepthSeparableConv2d, conv1x1, conv3x3 | |
| from .utils import _init_weights | |
| class ConvDownsample(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
| activation: nn.Module = nn.ReLU(inplace=True), | |
| groups: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| assert isinstance(groups, int) and groups > 0, f"Number of groups should be an integer greater than 0, but got {groups}." | |
| assert in_channels % groups == 0, f"Number of input channels {in_channels} should be divisible by number of groups {groups}." | |
| assert out_channels % groups == 0, f"Number of output channels {out_channels} should be divisible by number of groups {groups}." | |
| self.grouped_conv = groups > 1 | |
| # conv1 is used for downsampling | |
| # self.conv1 = nn.Conv2d( | |
| # in_channels=in_channels, | |
| # out_channels=in_channels, | |
| # kernel_size=2, | |
| # stride=2, | |
| # padding=0, | |
| # bias=not norm_layer, | |
| # groups=groups, | |
| # ) | |
| # if self.grouped_conv: | |
| # self.conv1_1x1 = conv1x1(in_channels, in_channels, stride=1, bias=not norm_layer) | |
| self.conv1 = nn.AvgPool2d(kernel_size=2, stride=2) # downsample by 2 | |
| if self.grouped_conv: | |
| self.conv1_1x1 = nn.Identity() | |
| self.norm1 = norm_layer(in_channels) if norm_layer else nn.Identity() | |
| self.act1 = activation | |
| self.conv2 = conv3x3( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| stride=1, | |
| groups=groups, | |
| bias=not norm_layer, | |
| ) | |
| if self.grouped_conv: | |
| self.conv2_1x1 = conv1x1(in_channels, in_channels, stride=1, bias=not norm_layer) | |
| self.norm2 = norm_layer(in_channels) if norm_layer else nn.Identity() | |
| self.act2 = activation | |
| self.conv3 = conv3x3( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| stride=1, | |
| groups=groups, | |
| bias=not norm_layer, | |
| ) | |
| if self.grouped_conv: | |
| self.conv3_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) | |
| self.norm3 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
| self.act3 = activation | |
| self.downsample = nn.Sequential( | |
| nn.AvgPool2d(kernel_size=2, stride=2), # make sure the spatial sizes match | |
| conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
| norm_layer(out_channels) if norm_layer else nn.Identity(), | |
| ) | |
| self.apply(_init_weights) | |
| def forward(self, x: Tensor) -> Tensor: | |
| identity = x | |
| # downsample | |
| out = self.conv1(x) | |
| out = self.conv1_1x1(out) if self.grouped_conv else out | |
| out = self.norm1(out) | |
| out = self.act1(out) | |
| out = self.conv2(out) | |
| out = self.conv2_1x1(out) if self.grouped_conv else out | |
| out = self.norm2(out) | |
| out = self.act2(out) | |
| out = self.conv3(out) | |
| out = self.conv3_1x1(out) if self.grouped_conv else out | |
| out = self.norm3(out) | |
| # shortcut | |
| out += self.downsample(identity) | |
| out = self.act3(out) | |
| return out | |
| class LightConvDownsample(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
| activation: nn.Module = nn.ReLU(inplace=True), | |
| ) -> None: | |
| super().__init__() | |
| self.conv1 = DepthSeparableConv2d( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| kernel_size=2, | |
| stride=2, | |
| padding=0, | |
| bias=not norm_layer, | |
| ) | |
| self.norm1 = norm_layer(in_channels) if norm_layer else nn.Identity() | |
| self.act1 = activation | |
| self.conv2 = DepthSeparableConv2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=not norm_layer, | |
| ) | |
| self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
| self.act2 = activation | |
| self.conv3 = DepthSeparableConv2d( | |
| in_channels=out_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=not norm_layer, | |
| ) | |
| self.norm3 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
| self.act3 = activation | |
| self.downsample = nn.Sequential( | |
| nn.AvgPool2d(kernel_size=2, stride=2), # make sure the spatial sizes match | |
| conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
| norm_layer(out_channels) if norm_layer else nn.Identity(), | |
| ) | |
| self.apply(_init_weights) | |
| def forward(self, x: Tensor) -> Tensor: | |
| identity = x | |
| # downsample | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.act1(out) | |
| # refine 1 | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| out = self.act2(out) | |
| # refine 2 | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| # shortcut | |
| out += self.downsample(identity) | |
| out = self.act3(out) | |
| return x | |
| class LighterConvDownsample(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, | |
| activation: nn.Module = nn.ReLU(inplace=True), | |
| ) -> None: | |
| super().__init__() | |
| self.conv1 = DepthSeparableConv2d( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| kernel_size=2, | |
| stride=2, | |
| padding=0, | |
| bias=not norm_layer, | |
| ) | |
| self.norm1 = norm_layer(in_channels) if norm_layer else nn.Identity() | |
| self.act1 = activation | |
| self.conv2 = conv3x3( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| stride=1, | |
| groups=in_channels, | |
| bias=not norm_layer, | |
| ) | |
| self.norm2 = norm_layer(in_channels) if norm_layer else nn.Identity() | |
| self.act2 = activation | |
| self.conv3 = conv1x1( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| stride=1, | |
| bias=not norm_layer, | |
| ) | |
| self.norm3 = norm_layer(out_channels) if norm_layer else nn.Identity() | |
| self.act3 = activation | |
| self.downsample = nn.Sequential( | |
| nn.AvgPool2d(kernel_size=2, stride=2), # make sure the spatial sizes match | |
| conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), | |
| norm_layer(out_channels) if norm_layer else nn.Identity(), | |
| ) | |
| def forward(self, x: Tensor) -> Tensor: | |
| identity = x | |
| # downsample | |
| out = self.conv1(x) | |
| out = self.norm1(out) | |
| out = self.act1(out) | |
| # refine, depthwise conv | |
| out = self.conv2(out) | |
| out = self.norm2(out) | |
| out = self.act2(out) | |
| # refine, pointwise conv | |
| out = self.conv3(out) | |
| out = self.norm3(out) | |
| # shortcut | |
| out += self.downsample(identity) | |
| out = self.act3(out) | |
| return out | |